Deep Learning-Based Instance Segmentation for Indoor Fire Load Recognition

被引:14
|
作者
Zhou, Yu-Cheng [1 ]
Hu, Zhen-Zhong [2 ]
Yan, Ke-Xiao [1 ]
Lin, Jia-Rui [1 ,3 ]
机构
[1] Tsinghua Univ, Dept Civil Engn, 84, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[3] Tsinghua Univ, Tsinghua Univ Glodon Joint Res Ctr Bldg Informat, Beijing 100084, Peoples R China
来源
IEEE ACCESS | 2021年 / 9卷
基金
中国国家自然科学基金;
关键词
Image segmentation; Buildings; Semantics; Deep learning; Task analysis; Object detection; Image recognition; Building resilience; deep learning; fire load recognition; fire safety; indoor scene; instance segmentation; performance-based design; OBJECT DETECTION; IMAGE;
D O I
10.1109/ACCESS.2021.3124831
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate fire load (combustible objects) information is crucial for safety design and resilience assessment of buildings. Traditional fire load acquisition methods, such as fire load survey, which are time-consuming, tedious, and error-prone, failed to adapt to dynamic changed indoor scenes. As a starting point of automatic fire load estimation, fast recognition and detection of indoor fire load are important. Thus, this research proposes a computer vision-based method to automatically detect indoor fire loads using deep learning-based instance segmentation. First, indoor elements are classified into different categories according to their material composition. Next, an image dataset of indoor scenes with instance annotations is developed. Finally, a deep learning model, based on Mask R-CNN, is developed and trained using transfer learning to detect fire loads in images. Experimental results show that our model achieves promising accuracy, as measured by an average precision (AP) of 40.5% and AP(50) of 59.2%, for instance segmentation on the dataset. A comparison with manual detection demonstrates the method's high efficiency as it can detect fire load 1200 times faster than humans. This research contributes to the body of knowledge 1) a novel method of high accuracy and efficiency for automated fire load recognition in indoor environments based on instance segmentation; 2) training techniques for a deep learning model in a relatively small dataset of indoor images which includes complex scenes and a variety of instances; and 3) an image dataset with annotations of indoor fire loads. Although instance segmentation has been applied for several years, this is a pioneering research on using it for automated indoor fire load recognition, which paves the foundation for automatic fire load estimation and resilience assessment for the built environment.
引用
收藏
页码:148771 / 148782
页数:12
相关论文
共 50 条
  • [21] Review of object instance segmentation based on deep learning
    Tian, Di
    Han, Yi
    Wang, Biyao
    Guan, Tian
    Gu, Hengzhi
    Wei, Wei
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)
  • [22] Deep Learning-Based Iris Segmentation for Iris Recognition in Visible Light Environment
    Arsalan, Muhammad
    Hong, Hyung Gil
    Naqvi, Rizwan Ali
    Lee, Min Beom
    Kim, Min Cheol
    Kim, Dong Seop
    Kim, Chan Sik
    Park, Kang Ryoung
    SYMMETRY-BASEL, 2017, 9 (11):
  • [23] A Deep Learning-Based Indoor Odor Compass
    Yan, Zheng
    Meng, Qing-Hao
    Jing, Tao
    Chen, Si-Wen
    Hou, Hui-Rang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [24] A Deep Learning-Based Indoor Odor Compass
    Yan, Zheng
    Meng, Qing-Hao
    Jing, Tao
    Chen, Si-Wen
    Hou, Hui-Rang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [25] Street tree segmentation from mobile laser scanning data using deep learning-based image instance segmentation
    Li, Qiujie
    Yan, Yu
    URBAN FORESTRY & URBAN GREENING, 2024, 92
  • [26] Deep Learning-Based Instance Segmentation Method of Litchi Canopy from UAV-Acquired Images
    Mo, Jiawei
    Lan, Yubin
    Yang, Dongzi
    Wen, Fei
    Qiu, Hongbin
    Chen, Xin
    Deng, Xiaoling
    REMOTE SENSING, 2021, 13 (19)
  • [27] A Deep Learning-Based Approach for Glomeruli Instance Segmentation from Multistained Renal Biopsy Pathologic Images
    Jiang, Lei
    Chen, Wenkai
    Dong, Bao
    Mei, Ke
    Zhu, Chuang
    Liu, Jun
    Cai, Meishun
    Yan, Yu
    Wang, Gongwei
    Zuo, Li
    Shi, Hongxia
    AMERICAN JOURNAL OF PATHOLOGY, 2021, 191 (08): : 1431 - 1441
  • [28] AUTOMATIC DETECTION AND TRACKING OF MOUNTING BEHAVIOR IN CATTLE USING A DEEP LEARNING-BASED INSTANCE SEGMENTATION MODEL
    Noe, Su myat
    Zin, Thi thi
    Tin, Pyke
    Kobayashi, Ikuo
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2022, 18 (01): : 211 - 220
  • [29] Mapping Cones on Mars in High-Resolution Planetary Images with Deep Learning-Based Instance Segmentation
    Yang, Chen
    Zhang, Nan
    Guan, Renchu
    Zhao, Haishi
    REMOTE SENSING, 2024, 16 (02)
  • [30] Deep learning-based image classification of sea turtles using object detection and instance segmentation models
    Baek, Jong-Won
    Kim, Jung-Il
    Kim, Chang-Bae
    PLOS ONE, 2024, 19 (11):