Deep learning-based image classification of sea turtles using object detection and instance segmentation models

被引:0
|
作者
Baek, Jong-Won [1 ]
Kim, Jung-Il [1 ]
Kim, Chang-Bae [1 ]
机构
[1] Sangmyung Univ, Dept Biotechnol, Seoul, South Korea
来源
PLOS ONE | 2024年 / 19卷 / 11期
关键词
GLOBAL PATTERNS; ABUNDANCE; BEHAVIOR; AGE;
D O I
10.1371/journal.pone.0313323
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sea turtles exhibit high migratory rates and occupy a broad range of habitats, which in turn makes monitoring these taxa challenging. Applying deep learning (DL) models to vast image datasets collected from citizen science programs can offer promising solutions to overcome the challenge of monitoring the wide habitats of wildlife, particularly sea turtles. Among DL models, object detection models, such as the You Only Look Once (YOLO) series, have been extensively employed for wildlife classification. Despite their successful application in this domain, detecting objects in images with complex backgrounds, including underwater environments, remains a significant challenge. Recently, instance segmentation models have been developed to address this issue by providing more accurate classification of complex images compared to traditional object detection models. This study compared the performance of two state-of-the-art DL methods namely; the object detection model (YOLOv5) and instance segmentation model (YOLOv5-seg), to detect and classify sea turtles. The images were collected from iNaturalist and Google and then divided into 64% for training, 16% for validation, and 20% for test sets. Model performance during and after finishing training was evaluated by loss functions and various indexes, respectively. Based on loss functions, YOLOv5-seg demonstrated a lower error rate in detecting rather than classifying sea turtles than the YOLOv5. According to mean Average Precision (mAP) values, which reflect precision and recall, the YOLOv5-seg model showed superior performance than YOLOv5. The mAP0.5 and mAP0.5:0.95 for the YOLOv5 model were 0.885 and 0.795, respectively, whereas for the YOLOv5-seg, these values were 0.918 and 0.831, respectively. In particular, based on the loss functions and classification results, the YOLOv5-seg showed improved performance for detecting rather than classifying sea turtles compared to the YOLOv5. The results of this study may help improve sea turtle monitoring in the future.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Deep learning-based rebar detection and instance segmentation in images
    Sun, Tao
    Fan, Qipei
    Shao, Yi
    ADVANCED ENGINEERING INFORMATICS, 2025, 65
  • [2] Deep learning-based image classification of turtles imported into Korea
    Jong-Won Baek
    Jung-Il Kim
    Chang-Bae Kim
    Scientific Reports, 13
  • [3] Deep learning-based image classification of turtles imported into Korea
    Baek, Jong-Won
    Kim, Jung-Il
    Kim, Chang-Bae
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [4] Utilizing a Deep Learning-Based Object Detection and Instance Segmentation Algorithm for the Delineation of Prostate and Prostate Cancer Segmentation
    Feldman, A. M.
    Dai, Z.
    Carver, E.
    Liu, C.
    Lee, J. K.
    Pantelic, M.
    Elshaikh, M. A.
    Wen, N.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : S197 - S198
  • [5] Deep Learning-Based Multiclass Instance Segmentation for Dental Lesion Detection
    Fatima, Anum
    Shafi, Imran
    Afzal, Hammad
    Mahmood, Khawar
    Diez, Isabel de la Torre
    Lipari, Vivian
    Ballester, Julien Brito
    Ashraf, Imran
    HEALTHCARE, 2023, 11 (03)
  • [6] Application of a Deep Learning-Based Instance Segmentation Model for Behavior Classification of Pigs
    Ma R.
    Park J.-S.
    Kim S.H.
    Kim S.-C.
    Journal of Institute of Control, Robotics and Systems, 2022, 28 (04) : 326 - 333
  • [7] Deep Learning-based Brightness Adaptive Instance Segmentation Using CLAHE
    Lee, Dongwoo
    Kim, Yeongmin
    Hwang, Myun Joong
    Journal of Institute of Control, Robotics and Systems, 2025, 31 (03) : 225 - 230
  • [8] Review of object instance segmentation based on deep learning
    Tian, Di
    Han, Yi
    Wang, Biyao
    Guan, Tian
    Gu, Hengzhi
    Wei, Wei
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)
  • [9] Deep learning-based concrete defects classification and detection using semantic segmentation
    Arafin, Palisa
    Billah, A. H. M. Muntasir
    Issa, Anas
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024, 23 (01): : 383 - 409
  • [10] Deep Learning-Based Thermal Image Reconstruction and Object Detection
    Batchuluun, Ganbayar
    Kang, Jin Kyu
    Nguyen, Dat Tien
    Pham, Tuyen Danh
    Arsalan, Muhammad
    Park, Kang Ryoung
    IEEE ACCESS, 2021, 9 : 5951 - 5971