Deep learning-based concrete defects classification and detection using semantic segmentation

被引:17
|
作者
Arafin, Palisa [1 ]
Billah, A. H. M. Muntasir [2 ,4 ]
Issa, Anas [3 ]
机构
[1] Lakehead Univ, Dept Civil Engn, Thunder Bay, ON, Canada
[2] Univ Calgary, Dept Civil Engn, Calgary, AB, Canada
[3] United Arab Emirates Univ, Dept Civil & Environm Engn, Abu Dhabi, U Arab Emirates
[4] Univ Calgary, Dept Civil Engn, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
关键词
Concrete defects; convolutional neural network; semantic segmentation; encoder-decoder model; structural health monitoring; STRUCTURAL DAMAGE DETECTION; CRACK DETECTION; NEURAL-NETWORK; IMAGE;
D O I
10.1177/14759217231168212
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Visual damage detection of infrastructure using deep learning (DL)-based computational approaches can facilitate a potential solution to reduce subjectivity yet increase the accuracy of the damage diagnoses and accessibility in a structural health monitoring (SHM) system. However, despite remarkable advances with DL-based SHM, the most significant challenges to achieving the real-time implication are the limited available defects image databases and the selection of DL networks depth. To address these challenges, this research has created a diverse dataset with concrete crack (4087) and spalling (1100) images and used it for damage condition assessment by applying convolutional neural network (CNN) algorithms. CNN-classifier models are used to identify different types of defects and semantic segmentation for labeling the defect patterns within an image. Three CNN-based models-Visual Geometry Group (VGG)19, ResNet50, and InceptionV3 are incorporated as CNN-classifiers. For semantic segmentation, two encoder-decoder models, U-Net and pyramid scene parsing network architecture are developed based on four backbone models, including VGG19, ResNet50, InceptionV3, and EfficientNetB3. The CNN-classifier models are analyzed on two optimizers-stochastic gradient descent (SGD), root mean square propagation (RMSprop), and learning rates-0.1, 0.001, and 0.0001. However, the CNN-segmentation models are analyzed for SGD and adaptive moment estimation, trained with three different learning rates-0.1, 0.01, and 0.0001, and evaluated based on accuracy, intersection over union, precision, recall, and F1-score. InceptionV3 achieves the best performance for defects classification with an accuracy of 91.98% using the RMSprop optimizer. For crack segmentation, EfficientNetB3-based U-Net, and for spalling segmentation, IncenptionV3-based U-Net model outperformed all other algorithms, with an F1-score of 95.66 and 89.43%, respectively.
引用
收藏
页码:383 / 409
页数:27
相关论文
共 50 条
  • [1] Robust Concrete Crack Detection Using Deep Learning-Based Semantic Segmentation
    Lee, Donghan
    Kim, Jeongho
    Lee, Daewoo
    INTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES, 2019, 20 (01) : 287 - 299
  • [2] Robust Concrete Crack Detection Using Deep Learning-Based Semantic Segmentation
    Donghan Lee
    Jeongho Kim
    Daewoo Lee
    International Journal of Aeronautical and Space Sciences, 2019, 20 : 287 - 299
  • [3] A Deforestation Detection Network Using Deep Learning-Based Semantic Segmentation
    Das, Pradeep Kumar
    Sahu, Adyasha
    Xavy, Dias V.
    Meher, Sukadev
    IEEE SENSORS LETTERS, 2024, 8 (01) : 1 - 4
  • [4] Deep learning-based framework for tumour detection and semantic segmentation
    Kot, Estera
    Krawczyk, Zuzanna
    Siwek, Krzysztof
    Krolicki, Leszek
    Czwarnowski, Piotr
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2021, 69 (03)
  • [5] Deep Learning-based Semantic Segmentation for Crack Detection on Marbles
    Akosman, Sahin Alp
    Oktem, Mert
    Moral, Ozge Taylan
    Kilic, Volkan
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [6] Deforestation detection using deep learning-based semantic segmentation techniques: a systematic review
    Jelas, Imran Md
    Zulkifley, Mohd Asyraf
    Abdullah, Mardina
    Spraggon, Martin
    FRONTIERS IN FORESTS AND GLOBAL CHANGE, 2024, 7
  • [7] Pixelwise asphalt concrete pavement crack detection via deep learning-based semantic segmentation method
    Huyan, Ju
    Ma, Tao
    Li, Wei
    Yang, Handuo
    Xu, Zhengchao
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (08):
  • [8] Review of Deep Learning-Based Semantic Segmentation
    Zhang Xiangfu
    Jian, Liu
    Shi Zhangsong
    Wu Zhonghong
    Zhi, Wang
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (15)
  • [9] Crack Detection from a Concrete Surface Image Based on Semantic Segmentation Using Deep Learning
    Yamane, Tatsuro
    Chun, Pang-jo
    JOURNAL OF ADVANCED CONCRETE TECHNOLOGY, 2020, 18 (09) : 493 - 504
  • [10] Deep learning-based classification and segmentation for scalpels
    Baiquan Su
    Qingqian Zhang
    Yi Gong
    Wei Xiu
    Yang Gao
    Lixin Xu
    Han Li
    Zehao Wang
    Shi Yu
    Yida David Hu
    Wei Yao
    Junchen Wang
    Changsheng Li
    Jie Tang
    Li Gao
    International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 855 - 864