Crack Detection from a Concrete Surface Image Based on Semantic Segmentation Using Deep Learning

被引:52
|
作者
Yamane, Tatsuro [1 ]
Chun, Pang-jo [2 ]
机构
[1] Univ Tokyo, Dept Int Studies, Tokyo, Japan
[2] Univ Tokyo, Dept Civil Engn, Tokyo, Japan
基金
日本科学技术振兴机构;
关键词
MACHINE;
D O I
10.3151/jact.18.493
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Due to their wide applicability in inspection of concrete structures, there is considerable interest in the development of automated crack detection method by image processing. However, the accuracy of existing methods tends to be influenced by the existence of traces of tie-rod holes and formworks. In order to reduce these influences, this paper proposes a crack detection method based on semantic segmentation by deep learning. The accuracy of developed method is investigated by the photos of concrete structures with lots of adverse conditions including shadow and dirt, and it is found that not only the crack region could be detected but also the trace of tie-rod holes and formworks could be removed from the detection result with high accuracy. This paper is the English translation from the authors' previous work [Yamane, T. and Chun, P., (2019). "Crack detection from an image of concrete surface based on semantic segmentation by deep learning." Journal of Structural Engineering, 65A, 130-138. (in Japanese)].
引用
收藏
页码:493 / 504
页数:12
相关论文
共 50 条
  • [1] Robust Concrete Crack Detection Using Deep Learning-Based Semantic Segmentation
    Lee, Donghan
    Kim, Jeongho
    Lee, Daewoo
    INTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES, 2019, 20 (01) : 287 - 299
  • [2] Robust Concrete Crack Detection Using Deep Learning-Based Semantic Segmentation
    Donghan Lee
    Jeongho Kim
    Daewoo Lee
    International Journal of Aeronautical and Space Sciences, 2019, 20 : 287 - 299
  • [3] Automatic concrete infrastructure crack semantic segmentation using deep learning
    Chen, Bo
    Zhang, Hua
    Wang, Guijin
    Huo, Jianwen
    Li, Yonglong
    Li, Linjing
    AUTOMATION IN CONSTRUCTION, 2023, 152
  • [4] A deep learning semantic segmentation network with attention mechanism for concrete crack detection
    Hang, Jiaqi
    Wu, Yingjie
    Li, Yancheng
    Lai, Tao
    Zhang, Jinge
    Li, Yang
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2023, 22 (05): : 3006 - 3026
  • [5] Autonomous Crack and Bughole Detection for Concrete Surface Image Based on Deep Learning
    Sun, Yujia
    Yang, Yang
    Yao, Gang
    Wei, Fujia
    Wong, Mingpu
    IEEE ACCESS, 2021, 9 : 85709 - 85720
  • [6] Enhanced Pedestrian Detection using Deep Learning based Semantic Image Segmentation
    Liu, Tianrui
    Stathaki, Tania
    2017 22ND INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2017,
  • [7] Deep Learning-based Semantic Segmentation for Crack Detection on Marbles
    Akosman, Sahin Alp
    Oktem, Mert
    Moral, Ozge Taylan
    Kilic, Volkan
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [8] Deep learning-based concrete defects classification and detection using semantic segmentation
    Arafin, Palisa
    Billah, A. H. M. Muntasir
    Issa, Anas
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024, 23 (01): : 383 - 409
  • [9] Pixelwise asphalt concrete pavement crack detection via deep learning-based semantic segmentation method
    Huyan, Ju
    Ma, Tao
    Li, Wei
    Yang, Handuo
    Xu, Zhengchao
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (08):
  • [10] Concrete crack detection using context-aware deep semantic segmentation network
    Zhang, Xinxiang
    Rajan, Dinesh
    Story, Brett
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2019, 34 (11) : 951 - 971