Deep learning-based image classification of sea turtles using object detection and instance segmentation models

被引:0
|
作者
Baek, Jong-Won [1 ]
Kim, Jung-Il [1 ]
Kim, Chang-Bae [1 ]
机构
[1] Sangmyung Univ, Dept Biotechnol, Seoul, South Korea
来源
PLOS ONE | 2024年 / 19卷 / 11期
关键词
GLOBAL PATTERNS; ABUNDANCE; BEHAVIOR; AGE;
D O I
10.1371/journal.pone.0313323
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sea turtles exhibit high migratory rates and occupy a broad range of habitats, which in turn makes monitoring these taxa challenging. Applying deep learning (DL) models to vast image datasets collected from citizen science programs can offer promising solutions to overcome the challenge of monitoring the wide habitats of wildlife, particularly sea turtles. Among DL models, object detection models, such as the You Only Look Once (YOLO) series, have been extensively employed for wildlife classification. Despite their successful application in this domain, detecting objects in images with complex backgrounds, including underwater environments, remains a significant challenge. Recently, instance segmentation models have been developed to address this issue by providing more accurate classification of complex images compared to traditional object detection models. This study compared the performance of two state-of-the-art DL methods namely; the object detection model (YOLOv5) and instance segmentation model (YOLOv5-seg), to detect and classify sea turtles. The images were collected from iNaturalist and Google and then divided into 64% for training, 16% for validation, and 20% for test sets. Model performance during and after finishing training was evaluated by loss functions and various indexes, respectively. Based on loss functions, YOLOv5-seg demonstrated a lower error rate in detecting rather than classifying sea turtles than the YOLOv5. According to mean Average Precision (mAP) values, which reflect precision and recall, the YOLOv5-seg model showed superior performance than YOLOv5. The mAP0.5 and mAP0.5:0.95 for the YOLOv5 model were 0.885 and 0.795, respectively, whereas for the YOLOv5-seg, these values were 0.918 and 0.831, respectively. In particular, based on the loss functions and classification results, the YOLOv5-seg showed improved performance for detecting rather than classifying sea turtles compared to the YOLOv5. The results of this study may help improve sea turtle monitoring in the future.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A survey on deep learning-based fine-grained object classification and semantic segmentation
    Zhao B.
    Feng J.
    Wu X.
    Yan S.
    International Journal of Automation and Computing, 2017, 14 (2) : 119 - 135
  • [32] Research on the Progress of Image Instance Segmentation Based on Deep Learning
    Liang X.-Y.
    Lin X.-K.
    Quan J.-C.
    Xiao K.-H.
    Quan, Ji-Chuan (qjch_cn@sina.com), 1600, Chinese Institute of Electronics (48): : 2476 - 2486
  • [33] An improved multi-object instance segmentation based on deep learning
    Alshdaifat, Nawaf Farhan Fankur
    Osman, Mohd Azam
    Talib, Abdullah Zawawi
    KUWAIT JOURNAL OF SCIENCE, 2022, 49 (02)
  • [34] A Survey of Deep Learning-Based Object Detection
    Jiao, Licheng
    Zhang, Fan
    Liu, Fang
    Yang, Shuyuan
    Li, Lingling
    Feng, Zhixi
    Qu, Rong
    IEEE ACCESS, 2019, 7 : 128837 - 128868
  • [35] Deep Learning-Based Instance Segmentation for Indoor Fire Load Recognition
    Zhou, Yu-Cheng
    Hu, Zhen-Zhong
    Yan, Ke-Xiao
    Lin, Jia-Rui
    IEEE ACCESS, 2021, 9 : 148771 - 148782
  • [36] Crop Disease Diagnosis with Deep Learning-Based Image Captioning and Object Detection
    Lee, Dong In
    Lee, Ji Hwan
    Jang, Seung Ho
    Oh, Se Jong
    Doo, Ill Chul
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [37] Deep learning-based image segmentation for defect detection in additive manufacturing: an overview
    Deshpande, Sourabh
    Venugopal, Vysakh
    Kumar, Manish
    Anand, Sam
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 134 (5-6): : 2081 - 2105
  • [38] A Comprehensive Study on the Robustness of Deep Learning-Based Image Classification and Object Detection in Remote Sensing: Surveying and Benchmarking
    Mei, Shaohui
    Lian, Jiawei
    Wang, Xiaofei
    Su, Yuru
    Ma, Mingyang
    Chau, Lap-Pui
    JOURNAL OF REMOTE SENSING, 2024, 4
  • [39] Deep Learning-Based Classification for Melanoma Detection Using XceptionNet
    Lu, Xinrong
    Zadeh, Y. A. Firoozeh Abolhasani
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [40] Deep Learning-Based Object Classification for Spectral Images
    Jacome, Roman
    Lopez, Carlos
    Garcia, Hans
    Arguello, Henry
    APPLICATIONS OF COMPUTATIONAL INTELLIGENCE, COLCACI 2020, 2021, 1346 : 147 - 159