Deep Learning-Based Instance Segmentation for Indoor Fire Load Recognition

被引:14
|
作者
Zhou, Yu-Cheng [1 ]
Hu, Zhen-Zhong [2 ]
Yan, Ke-Xiao [1 ]
Lin, Jia-Rui [1 ,3 ]
机构
[1] Tsinghua Univ, Dept Civil Engn, 84, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[3] Tsinghua Univ, Tsinghua Univ Glodon Joint Res Ctr Bldg Informat, Beijing 100084, Peoples R China
来源
IEEE ACCESS | 2021年 / 9卷
基金
中国国家自然科学基金;
关键词
Image segmentation; Buildings; Semantics; Deep learning; Task analysis; Object detection; Image recognition; Building resilience; deep learning; fire load recognition; fire safety; indoor scene; instance segmentation; performance-based design; OBJECT DETECTION; IMAGE;
D O I
10.1109/ACCESS.2021.3124831
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate fire load (combustible objects) information is crucial for safety design and resilience assessment of buildings. Traditional fire load acquisition methods, such as fire load survey, which are time-consuming, tedious, and error-prone, failed to adapt to dynamic changed indoor scenes. As a starting point of automatic fire load estimation, fast recognition and detection of indoor fire load are important. Thus, this research proposes a computer vision-based method to automatically detect indoor fire loads using deep learning-based instance segmentation. First, indoor elements are classified into different categories according to their material composition. Next, an image dataset of indoor scenes with instance annotations is developed. Finally, a deep learning model, based on Mask R-CNN, is developed and trained using transfer learning to detect fire loads in images. Experimental results show that our model achieves promising accuracy, as measured by an average precision (AP) of 40.5% and AP(50) of 59.2%, for instance segmentation on the dataset. A comparison with manual detection demonstrates the method's high efficiency as it can detect fire load 1200 times faster than humans. This research contributes to the body of knowledge 1) a novel method of high accuracy and efficiency for automated fire load recognition in indoor environments based on instance segmentation; 2) training techniques for a deep learning model in a relatively small dataset of indoor images which includes complex scenes and a variety of instances; and 3) an image dataset with annotations of indoor fire loads. Although instance segmentation has been applied for several years, this is a pioneering research on using it for automated indoor fire load recognition, which paves the foundation for automatic fire load estimation and resilience assessment for the built environment.
引用
收藏
页码:148771 / 148782
页数:12
相关论文
共 50 条
  • [1] Deep learning-based instance segmentation for improved pepper phenotyping
    Gomez-Zamanillo, Laura
    Galan, Pablo
    Bereciartua-Perez, Arantza
    Picon, Artzai
    Moreno, Jose Miguel
    Berns, Markus
    Echazarra, Jone
    SMART AGRICULTURAL TECHNOLOGY, 2024, 9
  • [2] Deep Learning-Based Instance Segmentation of Mushrooms in Their Natural Habitats
    Charisis, Christos
    Karantzalos, Konstantinos
    Argyropoulos, Dimitrios
    IEEE Transactions on AgriFood Electronics, 2024, 2 (02): : 403 - 412
  • [3] Deep learning-based rebar detection and instance segmentation in images
    Sun, Tao
    Fan, Qipei
    Shao, Yi
    ADVANCED ENGINEERING INFORMATICS, 2025, 65
  • [4] Deep Learning-based Brightness Adaptive Instance Segmentation Using CLAHE
    Lee, Dongwoo
    Kim, Yeongmin
    Hwang, Myun Joong
    Journal of Institute of Control, Robotics and Systems, 2025, 31 (03) : 225 - 230
  • [5] Deep Learning-Based Multiclass Instance Segmentation for Dental Lesion Detection
    Fatima, Anum
    Shafi, Imran
    Afzal, Hammad
    Mahmood, Khawar
    Diez, Isabel de la Torre
    Lipari, Vivian
    Ballester, Julien Brito
    Ashraf, Imran
    HEALTHCARE, 2023, 11 (03)
  • [6] Deep learning-based instance segmentation architectures in agriculture: A review of the scopes and challenges
    Charisis, Christos
    Argyropoulos, Dimitrios
    SMART AGRICULTURAL TECHNOLOGY, 2024, 8
  • [7] Person Retrieval in Video Surveillance Using Deep Learning-Based Instance Segmentation
    Tseng, Chien-Hao
    Hsieh, Chia-Chien
    Jwo, Dah-Jing
    Wu, Jyh-Horng
    Sheu, Ruey-Kai
    Chen, Lun-Chi
    JOURNAL OF SENSORS, 2021, 2021
  • [8] Application of a Deep Learning-Based Instance Segmentation Model for Behavior Classification of Pigs
    Ma R.
    Park J.-S.
    Kim S.H.
    Kim S.-C.
    Journal of Institute of Control, Robotics and Systems, 2022, 28 (04) : 326 - 333
  • [9] Construction Instance Segmentation (CIS) Dataset for Deep Learning-Based Computer Vision
    Yan, Xuzhong
    Zhang, Hong
    Wu, Yefei
    Lin, Chen
    Liu, Shengwei
    AUTOMATION IN CONSTRUCTION, 2023, 156
  • [10] Deep Learning-Based Instance Medullary Pyramid Segmentation in Routine CT Examinations
    Gregory, Adriana
    Moustafa, Amr
    Poudyal, Bhavya
    Denic, Aleksandar
    Rule, Andrew D.
    Kline, Timothy L.
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2022, 33 (11): : 547 - 547