ANALYSES OF SUBNANOMETER RESOLUTION CRYO-EM DENSITY MAPS

被引:16
|
作者
Baker, Matthew L. [1 ]
Baker, Mariah R. [1 ]
Hryc, Corey F. [1 ]
DiMaio, Frank [2 ]
机构
[1] Baylor Coll Med, Natl Ctr Macromol Imaging, Verna & Marrs McLean Dept Biochem & Mol Biol, Houston, TX 77030 USA
[2] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
关键词
PARTICLE ELECTRON CRYOMICROSCOPY; STRUCTURAL-INFORMATICS APPROACH; PROTEIN-STRUCTURE PREDICTION; X-RAY CRYSTALLOGRAPHY; FITTING ATOMIC MODELS; GROUP-II CHAPERONIN; RICE-DWARF-VIRUS; CRYOELECTRON MICROSCOPY; SECONDARY STRUCTURE; STRUCTURE REFINEMENT;
D O I
10.1016/S0076-6879(10)83001-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Today, electron cryomicroscopy (cryo-EM) can routinely achieve subnanometer resolutions of complex macromolecular assemblies. From a density map, one can extract key structural and functional information using a variety of computational analysis tools. At subnanometer resolution, these tools make it possible to isolate individual subunits, identify secondary structures, and accurately fit atomic models. With several cryo-EM studies achieving resolutions beyond 5 angstrom, computational modeling and feature recognition tools have been employed to construct backbone and atomic models of the protein components directly from a density map. In this chapter, we describe several common classes of computational tools that can be used to analyze and model subnanometer resolution reconstructions from cryo-EM. A general protocol for analyzing subnanometer resolution density maps is presented along with a full description of steps used in analyzing the 4.3 angstrom resolution structure of Mm-cpn.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 50 条
  • [41] Deep Learning to Predict Protein Backbone Structure from High-Resolution Cryo-EM Density Maps
    Dong Si
    Spencer A. Moritz
    Jonas Pfab
    Jie Hou
    Renzhi Cao
    Liguo Wang
    Tianqi Wu
    Jianlin Cheng
    Scientific Reports, 10
  • [42] A fragment based method for modeling of protein segments into cryo-EM density maps
    Jochen Ismer
    Alexander S. Rose
    Johanna K. S. Tiemann
    Peter W. Hildebrand
    BMC Bioinformatics, 18
  • [43] Molstack: A platform for interactive presentations of electron density and cryo-EM maps and their interpretations
    Porebski, Przemyslaw J.
    Bokota, Grzegorz
    Venkataramany, Barat S.
    Minor, Wladek
    PROTEIN SCIENCE, 2020, 29 (01) : 120 - 127
  • [44] Subnanometer Cryo-EM Structure of T-Box and tRNA Complex
    Su, Zhaoming
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 438A - 438A
  • [45] Cryo-EM: The Resolution Revolution and Drug Discovery
    de Oliveira, Taiana Maia
    van Beek, Lotte
    Shilliday, Fiona
    Debreczeni, Judit E.
    Phillips, Chris
    SLAS DISCOVERY, 2021, 26 (01) : 17 - 31
  • [46] Atomic Resolution Cryo-EM Structure of β-Galactosidase
    Bartesaghi, Alberto
    Aguerrebere, Cecilia
    Falconieri, Veronica
    Banerjee, Soojay
    Earl, Lesley A.
    Zhu, Xing
    Grigorieff, Nikolaus
    Milne, Jacqueline L. S.
    Sapiro, Guillermo
    Wu, Xiongwu
    Subramaniam, Sriram
    STRUCTURE, 2018, 26 (06) : 848 - +
  • [47] Super Resolution Cryo-EM Maps with 3D Deep Generative Networks
    Subramaniya, Sai Raghavendra Maddhuri Venkata
    Terashi, Genki
    Kihara, Daisuke
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 283A - 283A
  • [48] The cryo-EM resolution revolution and transcription complexes
    Hanske, Jonas
    Sadian, Yashar
    Mueller, Christoph W.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2018, 52 : 8 - 15
  • [49] Cryo-EM goes high-resolution
    Doerr, Allison
    NATURE METHODS, 2015, 12 (07) : 598 - 599
  • [50] Foil support improves cryo-EM resolution
    Arnaud, Celia
    CHEMICAL & ENGINEERING NEWS, 2020, 98 (39) : 9 - 9