ANALYSES OF SUBNANOMETER RESOLUTION CRYO-EM DENSITY MAPS

被引:16
|
作者
Baker, Matthew L. [1 ]
Baker, Mariah R. [1 ]
Hryc, Corey F. [1 ]
DiMaio, Frank [2 ]
机构
[1] Baylor Coll Med, Natl Ctr Macromol Imaging, Verna & Marrs McLean Dept Biochem & Mol Biol, Houston, TX 77030 USA
[2] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
关键词
PARTICLE ELECTRON CRYOMICROSCOPY; STRUCTURAL-INFORMATICS APPROACH; PROTEIN-STRUCTURE PREDICTION; X-RAY CRYSTALLOGRAPHY; FITTING ATOMIC MODELS; GROUP-II CHAPERONIN; RICE-DWARF-VIRUS; CRYOELECTRON MICROSCOPY; SECONDARY STRUCTURE; STRUCTURE REFINEMENT;
D O I
10.1016/S0076-6879(10)83001-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Today, electron cryomicroscopy (cryo-EM) can routinely achieve subnanometer resolutions of complex macromolecular assemblies. From a density map, one can extract key structural and functional information using a variety of computational analysis tools. At subnanometer resolution, these tools make it possible to isolate individual subunits, identify secondary structures, and accurately fit atomic models. With several cryo-EM studies achieving resolutions beyond 5 angstrom, computational modeling and feature recognition tools have been employed to construct backbone and atomic models of the protein components directly from a density map. In this chapter, we describe several common classes of computational tools that can be used to analyze and model subnanometer resolution reconstructions from cryo-EM. A general protocol for analyzing subnanometer resolution density maps is presented along with a full description of steps used in analyzing the 4.3 angstrom resolution structure of Mm-cpn.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 50 条
  • [21] Model-based local density sharpening of cryo-EM maps
    Jakobi, Arjen J.
    Wilmanns, Matthias
    Sachse, Carsten
    ELIFE, 2017, 6
  • [22] CryoTEN: efficiently enhancing cryo-EM density maps using transformers
    Selvaraj, Joel
    Wang, Liguo
    Cheng, Jianlin
    BIOINFORMATICS, 2025, 41 (03)
  • [23] Thresholding of cryo-EM density maps by false discovery rate control
    Beckers, Maximilian
    Jakobi, Arjen J.
    Sachse, Carsten
    IUCRJ, 2019, 6 : 18 - 33
  • [24] Genetic Algorithm Based Beta-Barrel Detection for Medium Resolution Cryo-EM Density Maps
    Ng, Albert
    Si, Dong
    BIOINFORMATICS RESEARCH AND APPLICATIONS (ISBRA 2017), 2017, 10330 : 174 - 185
  • [25] AAnchor: CNN guided detection of anchor amino acids in high resolution cryo-EM density maps
    Rozanov, Mark
    Wolfson, Haim J.
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 88 - 91
  • [26] Confidence maps: statistical inference of cryo-EM maps
    Beckers, Maximilian
    Palmer, Colin M.
    Sachse, Carsten
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2020, 76 : 332 - 339
  • [27] Automated atomic modeling in cryo-EM maps
    Singh, Arunima
    NATURE METHODS, 2024, 21 (05) : 749 - 749
  • [28] Measuring local-directional resolution and local anisotropy in cryo-EM maps
    Jose Luis Vilas
    Hemant D. Tagare
    Javier Vargas
    Jose Maria Carazo
    Carlos Oscar S. Sorzano
    Nature Communications, 11
  • [29] Measuring local-directional resolution and local anisotropy in cryo-EM maps
    Vilas, Jose Luis
    Tagare, Hemant D.
    Vargas, Javier
    Maria Carazo, Jose
    Sorzano, Carlos Oscar S.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [30] New measures of anisotropy of cryo-EM maps
    Vilas, Jose-Luis
    Tagare, Hemant D.
    NATURE METHODS, 2023, 20 (07) : 1021 - +