On the Maximal Spectrum of a Module and Zariski Topology

被引:6
|
作者
Ansari-Toroghy, H. [1 ]
Keyvani, S. [1 ]
机构
[1] Univ Guilan, Fac Math Sci, Dept Pure Math, Rasht, Iran
关键词
Maximal submodule; Max-injective module; Max-spectral space; Zariski topology; PRIME SPECTRUM; RINGS;
D O I
10.1007/s40840-014-0020-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any module Mover a commutative ring R, Spec(R)(M) (resp. Max(R)(M)) of M is the collection of all prime (resp. maximal) submodules. In this article, we investigate the interplay between the topological properties of Max(R)(M) and module theoretic properties of M. Also, for various types of modules M, we obtain some conditions under which Max(R)(M) is homeomorphic with the maximal ideal space of some ring.
引用
收藏
页码:303 / 316
页数:14
相关论文
共 50 条
  • [21] Zariski Topology on the Spectrum of Graded Pseudo Prime Submodules
    Abu-Dawwas, Rashid
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (03): : 17 - 26
  • [22] The Zariski topology on the spectrum of prime L-submodules
    Ameri, R.
    Mahjoob, R.
    Mootamani, M.
    SOFT COMPUTING, 2008, 12 (09) : 901 - 908
  • [23] The Radical-Zariski Topology on the Radical Spectrum of Modules
    Moghimi, Hosein Fazaeli
    Harehdashti, Javad Bagheri
    FILOMAT, 2022, 36 (09) : 3037 - 3050
  • [24] Zariski Topology
    Watase, Yasushige
    FORMALIZED MATHEMATICS, 2018, 26 (04): : 277 - 283
  • [25] On a Subspace of Dual Zariski Topology On a Subspace of Dual Zariski Topology
    Ceken, Secil
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [26] The quasi-Zariski topology on the graded quasi-primary spectrum of a graded module over a graded commutative ring
    Jaradat, Malik
    Al-Zoubi, Khaldoun
    GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (02) : 269 - 283
  • [27] S-Zariski Topology on S-Spectrum of Modules
    Yildiz, Eda
    Ersoy, Bayram Ali
    Tekir, Unsal
    FILOMAT, 2022, 36 (20) : 7103 - 7112
  • [28] SECOND CLASSICAL ZARISKI TOPOLOGY ON SECOND SPECTRUM OF LATTICE MODULES
    Girase, Pradip
    Borkar, Vandeo
    Phadatare, Narayan
    KOREAN JOURNAL OF MATHEMATICS, 2020, 28 (03): : 439 - 447
  • [29] ZARISKI-LIKE TOPOLOGY ON THE CLASSICAL PRIME SPECTRUM OF A MODULES
    Behboodi, M.
    Noori, M. J.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2009, 35 (01) : 255 - 271
  • [30] A Zariski Topology for Semimodules
    Atani, Shahabaddin Ebrahimi
    Atani, Reza Ebrahimi
    Tekir, Unsal
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2011, 4 (03): : 251 - 265