Zariski Topology

被引:2
|
作者
Watase, Yasushige [1 ]
机构
[1] Suginami Ku Matsunoki 3-21-6, Tokyo, Japan
来源
FORMALIZED MATHEMATICS | 2018年 / 26卷 / 04期
关键词
prime spectrum; local ring; semi-local ring; nilradical; Jacobson radical; Zariski topology;
D O I
10.2478/forma-2018-0024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We formalize in the Mizar system [3], [4] basic definitions of commutative ring theory such as prime spectrum, nilradical, Jacobson radical, local ring, and semi-local ring [5], [6], then formalize proofs of some related theorems along with the first chapter of [1]. The article introduces the so-called Zariski topology. The set of all prime ideals of a commutative ring A is called the prime spectrum of A denoted by Spectrum A. A new functor Spec generates Zariski topology to make Spectrum A a topological space. A different role is given to Spec as a map from a ring morphism of commutative rings to that of topological spaces by the following manner: for a ring homomorphism h : A -> B, we defined (Spec h) : Spec B -> Spec A by (Spec h)(p) = h(-1)(p) where p is an element of Spec B.
引用
收藏
页码:277 / 283
页数:7
相关论文
共 50 条
  • [1] On a Subspace of Dual Zariski Topology On a Subspace of Dual Zariski Topology
    Ceken, Secil
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [2] A Zariski Topology for Semimodules
    Atani, Shahabaddin Ebrahimi
    Atani, Reza Ebrahimi
    Tekir, Unsal
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2011, 4 (03): : 251 - 265
  • [3] A ZARISKI TOPOLOGY FOR MODULES
    Abuhlail, Jawad
    [J]. COMMUNICATIONS IN ALGEBRA, 2011, 39 (11) : 4163 - 4182
  • [4] On the Zariski topology of Ω-groups
    Lipyanski, R.
    [J]. GROUPS, ALGEBRAS AND IDENTITIES, 2019, 726 : 135 - 142
  • [5] Zariski topology and Markov topology on groups
    Dikranjan, Dikran
    Toller, Daniele
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2018, 241 : 115 - 144
  • [6] A Zariski topology for bicomodules and corings
    Abuhlail, Jawad Y.
    [J]. APPLIED CATEGORICAL STRUCTURES, 2008, 16 (1-2) : 13 - 28
  • [7] Dual of Zariski Topology for Modules
    Ceken, Secil
    Alkan, Mustafa
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [8] Productivity of the Zariski topology on groups
    Dikranjan, D.
    Toller, D.
    [J]. COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2013, 54 (02): : 219 - 237
  • [9] A Zariski Topology for Bicomodules and Corings
    Jawad Y. Abuhlail
    [J]. Applied Categorical Structures, 2008, 16 : 13 - 28
  • [10] Topologizable structures and Zariski topology
    Dutka, Joanna
    Ivanov, Aleksander
    [J]. ALGEBRA UNIVERSALIS, 2018, 79 (03)