Effects of low-temperature annealing on polycrystalline silicon for solar cells

被引:5
|
作者
Slunjski, Robert [1 ]
Capan, Ivana [1 ]
Pivac, Branko [1 ]
Le Donne, Alessia [2 ,3 ]
Binetti, Simona [2 ,3 ]
机构
[1] Rudjer Boskovic Inst, HR-10000 Zagreb, Croatia
[2] Univ Milano Bicocca, CNISM, I-20125 Milan, Italy
[3] Univ Milano Bicocca, Dept Mat Sci, Milano Bicocca Solar Energy Res Ctr MIB SOLAR, I-20125 Milan, Italy
关键词
Silicon; Defects; Dislocations; DLTS; Photoluminescence; Solar cells; FED GROWTH-SILICON; POINT-DEFECTS; DEEP LEVELS; EFG; DISLOCATIONS; CARBON; PHOTOLUMINESCENCE; CONTAMINATION; TRANSPORT; SHEETS;
D O I
10.1016/j.solmat.2010.09.016
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The polycrystalline silicon material grown by the edge-defined film-fed growth technique, and often used in solar cell production, is known to be carbon and dislocation rich. Aim of this work was to explore the effect of low-temperature annealing in vacuum on properties of these structural defects, often present in different solar-grade materials. Electrical measurements by deep level transient spectroscopy revealed the presence of the defects typically found in dislocated silicon. Detailed analysis further suggested that they are also carbon related, exhibiting quite unexpected behavior at such low-temperature annealing. Moreover, photoluminescence results showed electron-hole droplet condensation at dislocations after such low-temperature annealing. This further supports the hypothesis that point defects are incorporated at dislocation cores rather than in a cloud at its proximity. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:559 / 563
页数:5
相关论文
共 50 条
  • [21] ANOMALOUS LOW-TEMPERATURE ANNEALING OF ELECTRON-IRRADIATED LITHIUM-DOPED SILICON SOLAR-CELLS
    BRILLIANTOV, NV
    RUDENKO, AI
    SHCHERBAKOV, YV
    ZVEREV, VV
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1990, 121 (02): : K155 - K158
  • [22] LOW-TEMPERATURE DIFFUSION OF ARSENIC IN POLYCRYSTALLINE SILICON FILMS
    ARIENZO, M
    KOMEN, Y
    MICHEL, AE
    KASTL, RH
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1983, 130 (03) : C99 - C99
  • [23] LOW-TEMPERATURE VAPOR PHASE DEPOSITION OF POLYCRYSTALLINE SILICON
    FORD, KD
    THOMAS, R
    LAVERTY, SJ
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1971, 118 (08) : C221 - &
  • [24] Low-temperature formation of platinum silicides on polycrystalline silicon
    Chizh, Kirill V.
    Dubkov, Vladimir P.
    Senkov, Vyacheslav M.
    Pirshin, Igor V.
    Arapkina, Larisa V.
    Mironov, Sergey A.
    Orekhov, Andrey S.
    Yuryev, Vladimir A.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 843
  • [25] Large-grain polycrystalline silicon thin films obtained by low-temperature stepwise annealing of hydrogenated amorphous silicon
    Ruther, R
    Livingstone, J
    Dytlewski, N
    THIN SOLID FILMS, 1997, 310 (1-2) : 67 - 74
  • [26] LOW-TEMPERATURE PROTON IRRADIATION DAMAGES IN SILICON SOLAR-CELLS
    NASHIYAMA, I
    TERANISHI, E
    KAGEYAMA, M
    JAPANESE JOURNAL OF APPLIED PHYSICS, 1976, 15 (05) : 945 - 946
  • [27] Low-temperature fabrication of microcrystalline silicon and its application to solar cells
    Kondo, M
    Nasuno, Y
    Mase, H
    Wada, T
    Matsuda, A
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2002, 299 : 108 - 112
  • [28] Improvement of reliability in low-temperature polycrystalline silicon thin-film transistors by water vapor annealing
    Uraoka, Yukiharu
    Miyashita, Makoto
    Sugawara, Yuta
    Yano, Hiroshi
    Hatayama, Tomoaki
    Fuyuki, Takashi
    Sameshima, Toshiyuki
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (07): : 5657 - 5661
  • [29] Effects of Temperature and Concentration Mono and Polycrystalline Silicon Solar Cells: Extraction Parameters
    Khalis, M.
    Masrour, R.
    Khrypunov, G.
    Kirichenko, M.
    Kudiy, D.
    Zazoui, M.
    3RD EURO-MEDITERRANEAN CONFERENCE ON MATERIALS AND RENEWABLE ENERGIES (EMCMRE-3), 2016, 758
  • [30] Low-temperature metallization & interconnection for silicon heterojunction and perovskite silicon tandem solar cells
    De Rose, Angela
    Erath, Denis
    Nikitina, Veronika
    Schube, Jorg
    Guldali, Derya
    Minat, Adem
    Rossler, Torsten
    Richter, Alexei
    Kirner, Simon
    Kraft, Achim
    Lorenz, Andreas
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2023, 261