Linking monitoring and modelling: can long-term datasets be used more effectively as a basis for large-scale prediction?

被引:19
|
作者
Evans, Chris D. [1 ]
Cooper, David M. [1 ]
Monteith, Donald T. [2 ]
Helliwell, Rachel C. [3 ]
Moldan, Filip [4 ]
Hall, Jane [1 ]
Rowe, Edwin C. [1 ]
Cosby, Bernard J. [5 ]
机构
[1] Environm Ctr Wales, Ctr Ecol & Hydrol, Bangor LL57 2UP, Gwynedd, Wales
[2] Univ Lancaster, Lancaster Environm Ctr, Ctr Ecol & Hydrol, Lancaster LA1 4AP, England
[3] Macaulay Land Use Res Inst, Aberdeen AB15 8QH, Scotland
[4] IVL Swedish Environm Res Inst, S-40014 Gothenburg, Sweden
[5] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22901 USA
基金
英国自然环境研究理事会;
关键词
Modelling; Monitoring; Catchments; Upscaling; Acid neutralising capacity; Dissolved organic carbon; Sulphate; Nitrate; SOUTH-WEST SCOTLAND; ACID NEUTRALIZING CAPACITY; SOIL ACIDIFICATION MODEL; SURFACE-WATER CHEMISTRY; ATMOSPHERIC DEPOSITION; CLIMATE-CHANGE; FRESH-WATERS; MAGIC MODEL; NITRATE CONCENTRATIONS; NITROGEN DEPOSITION;
D O I
10.1007/s10533-010-9413-x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Data from long-term monitoring sites are vital for biogeochemical process understanding, and for model development. Implicitly or explicitly, information provided by both monitoring and modelling must be extrapolated in order to have wider scientific and policy utility. In many cases, large-scale modelling utilises little of the data available from long-term monitoring, instead relying on simplified models and limited, often highly uncertain, data for parameterisation. Here, we propose a new approach whereby outputs from model applications to long-term monitoring sites are upscaled to the wider landscape using a simple statistical method. For the 22 lakes and streams of the UK Acid Waters Monitoring Network (AWMN), standardised concentrations (Z scores) for Acid Neutralising Capacity (ANC), dissolved organic carbon, nitrate and sulphate show high temporal coherence among sites. This coherence permits annual mean solute concentrations at a new site to be predicted by back-transforming Z scores derived from observations or model applications at other sites. The approach requires limited observational data for the new site, such as annual mean estimates from two synoptic surveys. Several illustrative applications of the method suggest that it is effective at predicting long-term ANC change in upland surface waters, and may have wider application. Because it is possible to parameterise and constrain more sophisticated models with data from intensively monitored sites, the extrapolation of model outputs to policy relevant scales using this approach could provide a more robust, and less computationally demanding, alternative to the application of simple generalised models using extrapolated input data.
引用
收藏
页码:211 / 227
页数:17
相关论文
共 50 条
  • [21] Long-Term Dynamics of the Large-Scale Magnetic Structures
    P. Ambrož
    Solar Physics, 2004, 224 : 61 - 68
  • [22] Large-scale corridors and long-term landscape change
    Papadimitriou, FT
    KEY CONCEPTS IN LANDSCAPE ECOLOGY, 1998, : 303 - 307
  • [23] Interpreting INEEL vadose zone water movement on the basis of large-scale field tests and long-term vadose zone monitoring results
    Mattson, ED
    Magnuson, SO
    Ansley, SL
    VADOSE ZONE JOURNAL, 2004, 3 (01): : 35 - 46
  • [24] Capacity of large-scale, long-term biodiversity monitoring programmes to detect trends in species prevalence
    Scott E. Nielsen
    Diane L. Haughland
    Erin Bayne
    Jim Schieck
    Biodiversity and Conservation, 2009, 18 : 2961 - 2978
  • [25] Large-scale and long-term wildlife research and monitoring using camera traps: a continental synthesis
    Bruce, Tom
    Amir, Zachary
    Allen, Benjamin L.
    Alting, Brendan F.
    Amos, Matt
    Augusteyn, John
    Ballard, Guy-Anthony
    Behrendorff, Linda M.
    Bell, Kristian
    Bengsen, Andrew J.
    Bennett, Ami
    Benshemesh, Joe S.
    Bentley, Joss
    Blackmore, Caroline J.
    Boscarino-Gaetano, Remo
    Bourke, Lachlan A.
    Brewster, Rob
    Brook, Barry W.
    Broughton, Colin
    Buettel, Jessie C.
    Carter, Andrew
    Chiu-Werner, Antje
    Claridge, Andrew W.
    Comer, Sarah
    Comte, Sebastien
    Connolly, Rod M.
    Cowan, Mitchell A.
    Cross, Sophie L.
    Cunningham, Calum X.
    Dalziell, Anastasia H.
    Davies, Hugh F.
    Davis, Jenny
    Dawson, Stuart J.
    Di Stefano, Julian
    Dickman, Christopher R.
    Dillon, Martin L.
    Doherty, Tim S.
    Driessen, Michael M.
    Driscoll, Don A.
    Dundas, Shannon J.
    Eichholtzer, Anne C.
    Elliott, Todd F.
    Elsworth, Peter
    Fancourt, Bronwyn A.
    Fardell, Loren L.
    Faris, James
    Fawcett, Adam
    Fisher, Diana O.
    Fleming, Peter J. S.
    Forsyth, David M.
    BIOLOGICAL REVIEWS, 2025,
  • [26] LARGE-SCALE TESTING AND LONG-TERM MONITORING OF REINFORCED EARTH ABUTMENT-A CASE STUDY
    Hildebrand, Maciej
    BALTIC JOURNAL OF ROAD AND BRIDGE ENGINEERING, 2023, 18 (01): : 47 - 68
  • [27] SIBES: Long-term and large-scale monitoring of intertidal macrozoobenthos and sediment in the Dutch Wadden Sea
    Bijleveld, Allert I.
    de la Barra, Paula
    Danielson-Owczynsky, Hailley
    Brunner, Livia
    Dekinga, Anne
    Holthuijsen, Sander
    ten Horn, Job
    de Jong, Anne
    Kleine Schaars, Loran
    Kooij, Adrienne
    Koolhaas, Anita
    Kressin, Hidde
    van Leersum, Felianne
    Miguel, Simone
    de Monte, Luc G. G.
    Mosk, Dennis
    Niamir, Amin
    Oude Luttikhuis, Dorien
    Peck, Myron A.
    Piersma, Theunis
    Roohi, Reyhaneh
    Serre-Fredj, Leon
    Tacoma, Marten
    van Weerlee, Evaline
    de Wit, Bas
    Bom, Roeland A.
    SCIENTIFIC DATA, 2025, 12 (01)
  • [28] Improving broad-coverage medical entity linking with semantic type prediction and large-scale datasets
    Vashishth S.
    Newman-Griffis D.
    Joshi R.
    Dutt R.
    Rosé C.P.
    Journal of Biomedical Informatics, 2021, 121
  • [29] Capacity of large-scale, long-term biodiversity monitoring programmes to detect trends in species prevalence
    Nielsen, Scott E.
    Haughland, Diane L.
    Bayne, Erin
    Schieck, Jim
    BIODIVERSITY AND CONSERVATION, 2009, 18 (11) : 2961 - 2978
  • [30] Non-Linear Label Ranking for Large-Scale Prediction of Long-Term User Interests
    Djuric, Nemanja
    Grbovic, Mihajlo
    Radosavljevic, Vladan
    Bhamidipati, Narayan
    Vucetic, Slobodan
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 1788 - 1794