Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms

被引:237
|
作者
Roberts, Gareth O. [1 ]
Rosenthal, Jeffrey S.
机构
[1] Univ Lancaster, Fylde Coll, Dept Math & Stat, Lancaster LA1 4YW, England
[2] Univ Toronto, Dept Stat, Toronto, ON M5S 3G3, Canada
关键词
Markov chains; computational methods;
D O I
10.1239/jap/1183667414
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider basic ergodicity properties of adaptive Markov chain Monte Carlo algorithms under minimal assumptions, using coupling constructions. We prove convergence in distribution and a weak law of large numbers. We also give counterexamples to demonstrate that the assumptions we make are not redundant.
引用
收藏
页码:458 / 475
页数:18
相关论文
共 50 条
  • [21] Convergence of concurrent Markov chain Monte-Carlo algorithms
    Malfait, M
    Roose, D
    [J]. CONCURRENCY-PRACTICE AND EXPERIENCE, 1996, 8 (03): : 167 - 189
  • [22] A new strategy for speeding Markov chain Monte Carlo algorithms
    Antonietta Mira
    Daniel J. Sargent
    [J]. Statistical Methods and Applications, 2003, 12 (1) : 49 - 60
  • [23] Markov Chain Monte Carlo Algorithms for Lattice Gaussian Sampling
    Wang, Zheng
    Ling, Cong
    Hanrot, Guillaume
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 1489 - 1493
  • [24] Convergence control methods for Markov chain Monte Carlo algorithms
    Robert, CP
    [J]. STATISTICAL SCIENCE, 1995, 10 (03) : 231 - 253
  • [25] Multiple projection Markov chain Monte Carlo algorithms on submanifolds
    Lelievre, Tony
    Stoltz, Gabriel
    Zhang, Wei
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (02) : 737 - 788
  • [26] Convergence of concurrent Markov chain Monte-Carlo algorithms
    K.U. Leuven, Heverlee, Belgium
    [J]. Concurrency Pract Exper, 3 (167-189):
  • [27] Compiling Markov Chain Monte Carlo Algorithms for Probabilistic Modeling
    Huang, Daniel
    Tristan, Jean-Baptiste
    Morrisett, Greg
    [J]. ACM SIGPLAN NOTICES, 2017, 52 (06) : 111 - 125
  • [28] Border Sampling Through Coupling Markov Chain Monte Carlo
    Li, Guichong
    Japkowicz, Nathalie
    Stocki, Trevor J.
    Ungar, R. Kurt
    [J]. ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 393 - +
  • [29] Adaptive Markov Chain Monte Carlo for Bayesian Variable Selection
    Ji, Chunlin
    Schmidler, Scott C.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (03) : 708 - 728
  • [30] Gradient-based Adaptive Markov Chain Monte Carlo
    Titsias, Michalis K.
    Dellaportas, Petros
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32