Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms

被引:237
|
作者
Roberts, Gareth O. [1 ]
Rosenthal, Jeffrey S.
机构
[1] Univ Lancaster, Fylde Coll, Dept Math & Stat, Lancaster LA1 4YW, England
[2] Univ Toronto, Dept Stat, Toronto, ON M5S 3G3, Canada
关键词
Markov chains; computational methods;
D O I
10.1239/jap/1183667414
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider basic ergodicity properties of adaptive Markov chain Monte Carlo algorithms under minimal assumptions, using coupling constructions. We prove convergence in distribution and a weak law of large numbers. We also give counterexamples to demonstrate that the assumptions we make are not redundant.
引用
收藏
页码:458 / 475
页数:18
相关论文
共 50 条