ON THE CONTAINMENT CONDITION FOR ADAPTIVE MARKOV CHAIN MONTE CARLO ALGORITHMS

被引:0
|
作者
Bai, Yan [1 ]
Roberts, Gareth O. [2 ]
Rosenthal, Jeffrey S. [1 ]
机构
[1] Univ Toronto, Dept Stat, Toronto, ON M5S 3G3, Canada
[2] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
基金
加拿大自然科学与工程研究理事会;
关键词
Markov chain Monte Carlo; adaptive algorithms; ergodicity; diminishing adaptation; Containment;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers ergodicity properties of certain adaptive Markov chain Monte Carlo (MCMC) algorithms for multidimensional target distributions. It was previously shown in [23] that Diminishing Adaptation and Containment imply ergodicity of adaptive MCMC. We derive various sufficient conditions to ensure Containment.
引用
下载
收藏
页码:1 / 54
页数:54
相关论文
共 50 条