Impact of the Allowed Compositional Range of Additively Manufactured 316L Stainless Steel on Processability and Material Properties

被引:7
|
作者
Grosswendt, Felix [1 ]
Becker, Louis [1 ]
Rottger, Arne [2 ]
Chehreh, Abootorab Baqerzadeh [3 ]
Strauch, Anna Luise [4 ]
Uhlenwinkel, Volker [4 ]
Lentz, Jonathan [1 ]
Walther, Frank [3 ]
Fechte-Heinen, Rainer [4 ,5 ]
Weber, Sebastian [1 ]
Theisen, Werner [1 ]
机构
[1] Ruhr Univ Bochum, Chair Mat Technol, D-44801 Bochum, Germany
[2] Univ Wuppertal, Chair New Mfg Technol & Mat, D-42651 Solingen, Germany
[3] Tech Univ Dortmund, Dept Mat Test Engn, D-44227 Dortmund, Germany
[4] Leibniz Inst Mat Engn IWT, D-28359 Bremen, Germany
[5] Univ Bremen, MAPEX Ctr Mat & Proc, D-28359 Bremen, Germany
关键词
additive manufacturing; powder bed fusion-laser beam; metal (PBF-LB; M); stainless steel (316L); microstructure; solid-state cracking; HIGH-TEMPERATURE BEHAVIOR; BASE WELD METAL; HIGH-STRENGTH; LASER; MICROSTRUCTURE; SOLIDIFICATION; REFINEMENT; DUCTILITY;
D O I
10.3390/ma14154074
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work aims to show the impact of the allowed chemical composition range of AISI 316L stainless steel on its processability in additive manufacturing and on the resulting part properties. ASTM A276 allows the chromium and nickel contents in 316L stainless steel to be set between 16 and 18 mass%, respectively, 10 and 14 mass%. Nevertheless, the allowed compositional range impacts the microstructure formation in additive manufacturing and thus the properties of the manufactured components. Therefore, this influence is analyzed using three different starting powders. Two starting powders are laboratory alloys, one containing the maximum allowed chromium content and the other one containing the maximum nickel content. The third material is a commercial powder with the chemical composition set in the middle ground of the allowed compositional range. The materials were processed by laser-based powder bed fusion (PBF-LB/M). The powder characteristics, the microstructure and defect formation, the corrosion resistance, and the mechanical properties were investigated as a function of the chemical composition of the powders used. As a main result, solid-state cracking could be observed in samples additively manufactured from the starting powder containing the maximum nickel content. This is related to a fully austenitic solidification, which occurs because of the low chromium to nickel equivalent ratio. These cracks reduce the corrosion resistance as well as the elongation at fracture of the additively manufactured material that possesses a low chromium to nickel equivalent ratio of 1.0. A limitation of the nickel equivalent of the 316L type steel is suggested for PBF-LB/M production. Based on the knowledge obtained, a more detailed specification of the chemical composition of the type 316L stainless steel is recommended so that this steel can be PBF-LB/M processed to defect-free components with the desired mechanical and chemical properties.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Size-dependent stochastic tensile properties in additively manufactured 316L stainless steel
    Roach, Ashley M.
    White, Benjamin C.
    Garland, Anthony
    Jared, Bradley H.
    Carroll, Jay D.
    Boyce, Brad L.
    ADDITIVE MANUFACTURING, 2020, 32
  • [22] Influence of nozzle temperatures on the microstructures and physical properties of 316L stainless steel parts additively manufactured by material extrusion
    Musa, Nur Hidayah
    Mazlan, Nurainaa Natasya
    Yusuf, Shahir Mohd
    Redzuan, Farah Liana Binti Mohd
    Nordin, Nur Azmah
    Mazlan, Saiful Amri
    RAPID PROTOTYPING JOURNAL, 2024, 30 (10) : 2021 - 2032
  • [23] Nanoindentation Hardness and Corrosion Studies of Additively Manufactured 316L Stainless Steel
    England, Jennifer
    Uddin, Mohammad J.
    Ramirez-Cedillo, Erick
    Karunarathne, Darshan
    Nasrazadani, Seifollah
    Golden, Teresa D.
    Siller, Hector R.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2022, 31 (08) : 6795 - 6805
  • [24] Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L
    Deepak Kumar
    Suyog Jhavar
    Abhinav Arya
    K. G. Prashanth
    Satyam Suwas
    International Journal of Fracture, 2022, 235 : 61 - 78
  • [25] High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained
    Shamsujjoha, Md.
    Agnew, Sean R.
    Fitz-Gerald, James M.
    Moore, William R.
    Newman, Tabitha A.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2018, 49A (07): : 3011 - 3027
  • [26] High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained
    Md. Shamsujjoha
    Sean R. Agnew
    James M. Fitz-Gerald
    William R. Moore
    Tabitha A. Newman
    Metallurgical and Materials Transactions A, 2018, 49 : 3011 - 3027
  • [27] Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L
    Bertsch, K. M.
    de Bellefon, G. Meric
    Kuehl, B.
    Thoma, D. J.
    ACTA MATERIALIA, 2020, 199 (199) : 19 - 33
  • [28] Texture dependent strain hardening in additively manufactured stainless steel 316L
    Kumar, Deepak
    Shankar, Gyan
    Prashanth, K. G.
    Suwas, Satyam
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 820
  • [29] Ballistic Performance of Additively Manufactured 316L Stainless Steel Spherical Fragments
    Xue H.
    Wang T.
    Huang G.
    Cui X.
    Han H.
    Binggong Xuebao/Acta Armamentarii, 2024, 45 (02): : 395 - 406
  • [30] Nanoindentation Hardness and Corrosion Studies of Additively Manufactured 316L Stainless Steel
    Jennifer England
    Mohammad J. Uddin
    Erick Ramirez-Cedillo
    Darshan Karunarathne
    Seifollah Nasrazadani
    Teresa D. Golden
    Hector R. Siller
    Journal of Materials Engineering and Performance, 2022, 31 : 6795 - 6805