Influence of nozzle temperatures on the microstructures and physical properties of 316L stainless steel parts additively manufactured by material extrusion

被引:3
|
作者
Musa, Nur Hidayah [1 ]
Mazlan, Nurainaa Natasya [1 ]
Yusuf, Shahir Mohd [1 ]
Redzuan, Farah Liana Binti Mohd [2 ]
Nordin, Nur Azmah
Mazlan, Saiful Amri [1 ]
机构
[1] Univ Teknol Malaysia Malaysia, Japan Int Inst Technol, Engn Mat & Struct eMast iKohza, Kuala Lumpur, Malaysia
[2] Univ Teknol Malaysia Malaysia, Japan Int Inst Technol, Wind Engn Urban Artificial Man Made Environm iKohz, Kuala Lumpur, Malaysia
关键词
Additive manufacturing; Material extrusion; Sintering; 316L stainless steel; Nozzle temperature; MECHANICAL-PROPERTIES; RESISTANCE; CORROSION; IMPACT; FDM;
D O I
10.1108/RPJ-07-2023-0244
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Purpose - Material extrusion (ME) is a low-cost additive manufacturing (AM) technique that is capable of producing metallic components using desktop 3D printers through a three-step printing, debinding and sintering process to obtain fully dense metallic parts. However, research on ME AM, specifically fused filament fabrication (FFF) of 316L SS, has mainly focused on improving densification and mechanical properties during the post-printing stage; sintering parameters. Therefore, this study aims to investigate the effect of varying processing parameters during the initial printing stage, specifically nozzle temperatures, T-n (190 degrees C-300 degrees C) on the relative density, porosity, microstructures and microhardness of FFF 3D printed 316L SS. Design/methodology/approach - Cube samples (25 x 25 x 25 mm) are printed via a low-cost Artillery Sidewinder X1 3D printer using a 316L SS filament comprising of metal-polymer binder mix by varying nozzle temperatures from 190 to 300 degrees C. All samples are subjected to thermal debinding and sintering processes. The relative density of the sintered parts is determined based on the Archimedes Principle. Microscopy and analytical methods are conducted to evaluate the microstructures and phase compositions. Vickers microhardness (HV) measurements are used to assess the mechanical property. Finally, the correlation between relative density, microstructures and hardness is also reported. Findings - The results from this study suggest a suitable temperature range of 195 degrees C-205 degrees C for the successful printing of 316L SS green parts with high dimensional accuracy. On the other hand, T-n = 200 degrees C yields the highest relative density (97.6%) and highest hardness (292HV) in the sintered part, owing to the lowest porosity content (<3%) and the combination of the finest average grain size (similar to 47 <mu>m) and the presence of Cr23C6 precipitates. However, increasing T-n = 205 degrees C results in increased porosity percentage and grain coarsening, thereby reducing the HV values. Overall, these outcomes suggest that the microstructures and properties of sintered 316L SS parts fabricated by FFF AM could be significantly influenced even by adjusting the processing parameters during the initial printing stage only. Originality/value - This paper addresses the gap by investigating the impact of initial FFF 3D printing parameters, particularly nozzle temperature, on the microstructures and physical characteristics of sintered FFF 316L SS parts. This study provides an understanding of the correlation between nozzle temperature and various factors such as dimensional integrity, densification level, microstructure and hardness of the fabricated parts.
引用
收藏
页码:2021 / 2032
页数:12
相关论文
共 50 条
  • [1] The effect of printing parameters on sintered properties of extrusion-based additively manufactured stainless steel 316L parts
    Waqar Hassan
    Muhammad Asad Farid
    Anna Tosi
    Kedarnath Rane
    Matteo Strano
    The International Journal of Advanced Manufacturing Technology, 2021, 114 : 3057 - 3067
  • [2] The effect of printing parameters on sintered properties of extrusion-based additively manufactured stainless steel 316L parts
    Hassan, Waqar
    Farid, Muhammad Asad
    Tosi, Anna
    Rane, Kedarnath
    Strano, Matteo
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 114 (9-10): : 3057 - 3067
  • [3] Additively manufactured 316L stainless steel as a potential alternative implant material
    Alam, M. S.
    Campbell, S. R.
    Spivey, S. R.
    Dutta, G.
    Pal, N.
    Karan, A.
    Xie, J.
    Decoster, M. A.
    Murray, E. P.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 34 : 2358 - 2373
  • [4] Stress Corrosion Cracking of 316L Stainless Steel Additively Manufactured with Sinter-Based Material Extrusion
    Santamaria, Ricardo
    Wang, Ke
    Salasi, Mobin
    Iannuzzi, Mariano
    Mendoza, Michael Y.
    Quadir, Md Zakaria
    MATERIALS, 2023, 16 (11)
  • [5] Fatigue Behavior of Additively Manufactured Stainless Steel 316L
    Avanzini, Andrea
    MATERIALS, 2023, 16 (01)
  • [6] Thermomechanical fatigue of additively manufactured 316L stainless steel
    Babinsky, T.
    Sulak, I.
    Kubena, I.
    Man, J.
    Weiser, A.
    Svabenska, E.
    Englert, L.
    Guth, S.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 869
  • [7] Additively manufactured 316L stainless steel: An efficient electrocatalyst
    Lodhi, M. J. K.
    Deen, K. M.
    Haider, Waseem
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (45) : 24698 - 24704
  • [8] Impact of the Allowed Compositional Range of Additively Manufactured 316L Stainless Steel on Processability and Material Properties
    Grosswendt, Felix
    Becker, Louis
    Rottger, Arne
    Chehreh, Abootorab Baqerzadeh
    Strauch, Anna Luise
    Uhlenwinkel, Volker
    Lentz, Jonathan
    Walther, Frank
    Fechte-Heinen, Rainer
    Weber, Sebastian
    Theisen, Werner
    MATERIALS, 2021, 14 (15)
  • [9] Correlations of Geometry and Infill Degree of Extrusion Additively Manufactured 316L Stainless Steel Components
    Rosnitschek, Tobias
    Seefeldt, Andressa
    Alber-Laukant, Bettina
    Neumeyer, Thomas
    Altstaedt, Volker
    Tremmel, Stephan
    MATERIALS, 2021, 14 (18)
  • [10] Fatigue of additively manufactured 316L stainless steel: The influence of porosity and surface roughness
    Solberg, Klas
    Guan, Shuai
    Razavi, Nima
    Welo, Torgeir
    Chan, Kang Cheung
    Berto, Filippo
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2019, 42 (09) : 2043 - 2052