Impact of the Allowed Compositional Range of Additively Manufactured 316L Stainless Steel on Processability and Material Properties

被引:7
|
作者
Grosswendt, Felix [1 ]
Becker, Louis [1 ]
Rottger, Arne [2 ]
Chehreh, Abootorab Baqerzadeh [3 ]
Strauch, Anna Luise [4 ]
Uhlenwinkel, Volker [4 ]
Lentz, Jonathan [1 ]
Walther, Frank [3 ]
Fechte-Heinen, Rainer [4 ,5 ]
Weber, Sebastian [1 ]
Theisen, Werner [1 ]
机构
[1] Ruhr Univ Bochum, Chair Mat Technol, D-44801 Bochum, Germany
[2] Univ Wuppertal, Chair New Mfg Technol & Mat, D-42651 Solingen, Germany
[3] Tech Univ Dortmund, Dept Mat Test Engn, D-44227 Dortmund, Germany
[4] Leibniz Inst Mat Engn IWT, D-28359 Bremen, Germany
[5] Univ Bremen, MAPEX Ctr Mat & Proc, D-28359 Bremen, Germany
关键词
additive manufacturing; powder bed fusion-laser beam; metal (PBF-LB; M); stainless steel (316L); microstructure; solid-state cracking; HIGH-TEMPERATURE BEHAVIOR; BASE WELD METAL; HIGH-STRENGTH; LASER; MICROSTRUCTURE; SOLIDIFICATION; REFINEMENT; DUCTILITY;
D O I
10.3390/ma14154074
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work aims to show the impact of the allowed chemical composition range of AISI 316L stainless steel on its processability in additive manufacturing and on the resulting part properties. ASTM A276 allows the chromium and nickel contents in 316L stainless steel to be set between 16 and 18 mass%, respectively, 10 and 14 mass%. Nevertheless, the allowed compositional range impacts the microstructure formation in additive manufacturing and thus the properties of the manufactured components. Therefore, this influence is analyzed using three different starting powders. Two starting powders are laboratory alloys, one containing the maximum allowed chromium content and the other one containing the maximum nickel content. The third material is a commercial powder with the chemical composition set in the middle ground of the allowed compositional range. The materials were processed by laser-based powder bed fusion (PBF-LB/M). The powder characteristics, the microstructure and defect formation, the corrosion resistance, and the mechanical properties were investigated as a function of the chemical composition of the powders used. As a main result, solid-state cracking could be observed in samples additively manufactured from the starting powder containing the maximum nickel content. This is related to a fully austenitic solidification, which occurs because of the low chromium to nickel equivalent ratio. These cracks reduce the corrosion resistance as well as the elongation at fracture of the additively manufactured material that possesses a low chromium to nickel equivalent ratio of 1.0. A limitation of the nickel equivalent of the 316L type steel is suggested for PBF-LB/M production. Based on the knowledge obtained, a more detailed specification of the chemical composition of the type 316L stainless steel is recommended so that this steel can be PBF-LB/M processed to defect-free components with the desired mechanical and chemical properties.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Additively manufactured 316L stainless steel as a potential alternative implant material
    Alam, M. S.
    Campbell, S. R.
    Spivey, S. R.
    Dutta, G.
    Pal, N.
    Karan, A.
    Xie, J.
    Decoster, M. A.
    Murray, E. P.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 34 : 2358 - 2373
  • [2] Fatigue Behavior of Additively Manufactured Stainless Steel 316L
    Avanzini, Andrea
    MATERIALS, 2023, 16 (01)
  • [3] Thermomechanical fatigue of additively manufactured 316L stainless steel
    Babinsky, T.
    Sulak, I.
    Kubena, I.
    Man, J.
    Weiser, A.
    Svabenska, E.
    Englert, L.
    Guth, S.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 869
  • [4] Additively manufactured 316L stainless steel: An efficient electrocatalyst
    Lodhi, M. J. K.
    Deen, K. M.
    Haider, Waseem
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (45) : 24698 - 24704
  • [5] EFFECT OF HEAT TREATMENT ON THE PROPERTIES OF ADDITIVELY MANUFACTURED TYPE 316L STAINLESS STEEL
    Korinko, Paul S.
    Morgan, Michael J.
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2018, VOL 6A, 2019,
  • [6] Mechanical performance of additively manufactured austenitic 316L stainless steel
    Kim, Kyu-Tae
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2022, 54 (01) : 244 - 254
  • [7] THE MECHANICAL PERFORMANCE OF ADDITIVELY MANUFACTURED 316L AUSTENITIC STAINLESS STEEL
    Wisbey, Andrew
    Coon, David
    Chatterton, Mark
    Barras, Josh
    Guo, Da
    Yan, Kun
    Callaghan, Mark
    Mirihanage, Wajira
    PROCEEDINGS OF ASME 2022 PRESSURE VESSELS AND PIPING CONFERENCE, PVP2022, VOL 4A, 2022,
  • [8] Heterogeneous slip localization in an additively manufactured 316L stainless steel
    Bean, C.
    Wang, F.
    Charpagne, M. A.
    Villechaise, P.
    Valle, V.
    Agnew, S. R.
    Gianola, D. S.
    Pollock, T. M.
    Stinville, J. C.
    INTERNATIONAL JOURNAL OF PLASTICITY, 2022, 159
  • [9] Structural representation of additively manufactured 316L austenitic stainless steel
    Bronkhorst, C. A.
    Mayeur, J. R.
    Livescu, V.
    Pokharel, R.
    Brown, D. W.
    Gray, G. T., III
    INTERNATIONAL JOURNAL OF PLASTICITY, 2019, 118 : 70 - 86
  • [10] Effects of Heat Treatment on Additively Manufactured 316L Stainless Steel
    Burdova, Karolina
    Jirkova, Hana
    Kucerova, Ludmila
    Zetkova, Ivana
    Mach, Josef
    MANUFACTURING TECHNOLOGY, 2022, 22 (03): : 261 - 266