Stratified attention dense network for image super-resolution

被引:3
|
作者
Liu, Zhiwei [1 ]
Mao, Xiaofeng [1 ]
Huang, Ji [1 ]
Gan, Menghan [1 ]
Zhang, Yueyuan [1 ]
机构
[1] East China Jiaotong Univ, Dept Artificial Intelligence, Nanchang 330013, Jiangxi, Peoples R China
关键词
Image super-resolution; Deep learning; Convolutional neural network; Stratified attention dense;
D O I
10.1007/s11760-021-02011-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the development of deep learning technology, a variety of image SR approaches based on convolutional neural network (CNN) are developed to learn the mapping from low resolution (LR) to high resolution (HR). However, the feature information from raw images could not be distinguished very clearly by most of these existing methods, resulting in declining performance. In order to achieve a good image resolution, a very deep network is often used to integrate all the feature information from LR image. Obviously, deep network without fully exploring the available information achieves a very large computation complexity but cannot always ensure high image quality. To address these problems, a stratified attention dense network (SADN) is proposed in this paper to reconstruct higher quality HR images. In SADN, a stratified dense group (SDG) architecture is proposed to fully explore the feature information in LR images, including local and global information. Particularly, the attention dense module (ADM) is proposed to distinguish the extracted feature information so as to enhance the discrimination of network. The extensive experiments on benchmark datasets verify the effectiveness of the proposed method. Comparison with other state-of-the-art methods shows the superiority of the proposed SADN.
引用
收藏
页码:715 / 722
页数:8
相关论文
共 50 条
  • [31] Image super-resolution with parallel convolution attention network
    Zhang, Qiao
    Yang, Xiaomin
    Xiao, Long
    Yang, Feng
    Hussain, Farhan
    Won Kim, Pyoung
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (22):
  • [32] Residual shuffle attention network for image super-resolution
    Xuanyi Li
    Zhuhong Shao
    Bicao Li
    Yuanyuan Shang
    Jiasong Wu
    Yuping Duan
    Machine Vision and Applications, 2023, 34
  • [33] Edge Attention Network for Image Deblurring and Super-Resolution
    Han, Jong-Wook
    Choi, Jun-Ho
    Kim, Jun-Hyuk
    Lee, Jong-Seok
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 2401 - 2406
  • [34] Upsampling Attention Network for Single Image Super-resolution
    Zheng, Zhijie
    Jiao, Yuhang
    Fang, Guangyou
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 4: VISAPP, 2021, : 399 - 406
  • [35] Pixel attention convolutional network for image super-resolution
    Xin Wang
    Shufen Zhang
    Yuanyuan Lin
    Yanxia Lyu
    Jiale Zhang
    Neural Computing and Applications, 2023, 35 : 8589 - 8599
  • [36] A sparse lightweight attention network for image super-resolution
    Hongao Zhang
    Jinsheng Fang
    Siyu Hu
    Kun Zeng
    The Visual Computer, 2024, 40 (2) : 1261 - 1272
  • [37] A scalable attention network for lightweight image super-resolution
    Fang, Jinsheng
    Chen, Xinyu
    Zhao, Jianglong
    Zeng, Kun
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (08)
  • [38] Residual shuffle attention network for image super-resolution
    Li, Zhiwei
    Zhang, Yaping
    Yang, Yuwei
    Journal of Physics: Conference Series, 2021, 2025 (01):
  • [39] Kernel Attention Network for Single Image Super-Resolution
    Zhang, Dongyang
    Shao, Jie
    Shen, Heng Tao
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2020, 16 (03)
  • [40] A sparse lightweight attention network for image super-resolution
    Zhang, Hongao
    Fang, Jinsheng
    Hu, Siyu
    Zeng, Kun
    VISUAL COMPUTER, 2024, 40 (02): : 1261 - 1272