An estimate on the number of stable quadratic polynomials

被引:13
|
作者
Gomez, Domingo [1 ]
Nicolas, Alejandro P. [1 ]
机构
[1] Univ Cantabria, Dept Matemat Estadist & Computac, E-39005 Santander, Spain
关键词
Irreducible polynomials; Composition of polynomials; Stable quadratic polynomials;
D O I
10.1016/j.ffa.2010.06.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we obtain a nontrivial estimate for the size of the set of triples (a, b, c) is an element of F(q)* x F(q) x F(q) which correspond to stable quadratic polynomials f(X) = aX(2) + bX + c over the finite field Fq with q odd. This estimate is an improvement of the bound O(q(11/4)) conjectured in a recent work of A. Ostafe and I. Shparlinski. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:401 / 405
页数:5
相关论文
共 50 条
  • [31] Dynamics of quadratic polynomials
    Ble Gonzalez, Gamaliel
    Valdez Delgado, Rogelio
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2006, 12 (01): : 1 - 25
  • [32] Quadratic polynomials, period polynomials, and Hecke operators
    Jameson, Marie
    Raji, Wissam
    ACTA ARITHMETICA, 2013, 158 (03) : 287 - 297
  • [33] On Functional Graphs of Quadratic Polynomials
    Mans, Bernard
    Sha, Min
    Shparlinski, Igor E.
    Sutantyo, Daniel
    EXPERIMENTAL MATHEMATICS, 2019, 28 (03) : 292 - 300
  • [34] QUADRATIC POLYNOMIALS AND HENON ATTRACTOR
    YOCCOZ, JC
    ASTERISQUE, 1991, (201) : 143 - 165
  • [35] IDEALS GENERATED BY QUADRATIC POLYNOMIALS
    Ananyan, Tigran
    Hochster, Melvin
    MATHEMATICAL RESEARCH LETTERS, 2012, 19 (01) : 233 - 244
  • [36] Infinitely renormalizable quadratic polynomials
    Jiang, YP
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (11) : 5077 - 5091
  • [37] Mating Siegel quadratic polynomials
    Yampolsky, M
    Zakeri, S
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (01) : 25 - 78
  • [38] SIBLING CURVES OF QUADRATIC POLYNOMIALS
    Wiggins, Harry
    Harding, Ansie
    Engelbrecht, Johann
    QUAESTIONES MATHEMATICAE, 2017, 40 (02) : 215 - 223
  • [39] Periodic orbits of quadratic polynomials
    Erkama, Timo
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 : 804 - 814
  • [40] Representations of integral quadratic polynomials
    Chan, Wai Kiu
    Oh, Byeong-Kweon
    DIOPHANTINE METHODS, LATTICES, AND ARITHMETIC THEORY OF QUADRATIC FORMS, 2013, 587 : 31 - +