Infinitely renormalizable quadratic polynomials

被引:12
|
作者
Jiang, YP
机构
[1] CUNY, Grad Ctr, Dept Math, New York, NY 10016 USA
[2] CUNY Queens Coll, Dept Math, Flushing, NY 11367 USA
关键词
Julia set; local connectivity; two-dimensional puzzle; three-dimensional puzzle; infinitely renormalizable quadratic polynomial; complex bounds; unbranched;
D O I
10.1090/S0002-9947-00-02514-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the Julia set of a quadratic polynomial which admits an infinite sequence of unbranched, simple renormalizations with complex bounds is locally connected. The method in this study is three-dimensional puzzles.
引用
收藏
页码:5077 / 5091
页数:15
相关论文
共 50 条
  • [1] On conformal measures for infinitely renormalizable quadratic polynomials
    Huang, ZY
    Jiang, YP
    Wang, YF
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (10): : 1411 - 1420
  • [2] On conformal measures for infinitely renormalizable quadratic polynomials
    HUANG Zhiyong JIANG Yunping WANG Yuefei School of InformationRenmin University of ChinaBeijing China Department of MathematicsQueens CollegeCity University of New YorkNY USA
    Department of MathematicsGraduate SchoolCity University of New YorkNew YorkNY USA Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing China
    ScienceinChina,SerA., 2005, Ser.A.2005 (10)
  • [3] On conformal measures for infinitely renormalizable quadratic polynomials
    Zhiyong Huang
    Yunping Jiang
    Yuefei Wang
    Science in China Series A: Mathematics, 2005, 48 : 1411 - 1420
  • [4] On conformal measures for infinitely renormalizable quadratic polynomials
    HUANG Zhiyong~1 JIANG Yunping~(2
    2. Department of Mathematics
    Department of Mathematics
    3. Academy of Mathematics and Systems Science
    Science China Mathematics, 2005, (10) : 117 - 126
  • [5] No hyperbolic sets in J∞ for infinitely renormalizable quadratic polynomials
    Levin, Genadi
    Przytycki, Feliks
    ISRAEL JOURNAL OF MATHEMATICS, 2022, 251 (02) : 635 - 656
  • [6] Topology of the regular part for infinitely renormalizable quadratic polynomials
    Cabrera, Carlos
    Kawahira, Tomoki
    FUNDAMENTA MATHEMATICAE, 2010, 208 (01) : 35 - 56
  • [7] No hyperbolic sets in J∞ for infinitely renormalizable quadratic polynomials
    Genadi Levin
    Feliks Przytycki
    Israel Journal of Mathematics, 2022, 251 : 635 - 656
  • [8] On invariant measures of 'satellite' infinitely renormalizable quadratic polynomials
    Levin, Genadi
    Przytycki, Feliks
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024,
  • [9] Conformal measures and Hausdorff dimension for infinitely renormalizable quadratic polynomials
    Prado, EA
    BOLETIM DA SOCIEDADE BRASILEIRA DE MATEMATICA, 1999, 30 (01): : 31 - 52
  • [10] Conformal measures and Hausdorff dimension for infinitely renormalizable quadratic polynomials
    Eduardo A. Prado
    Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society, 1999, 30 : 31 - 52