Julia set;
local connectivity;
two-dimensional puzzle;
three-dimensional puzzle;
infinitely renormalizable quadratic polynomial;
complex bounds;
unbranched;
D O I:
10.1090/S0002-9947-00-02514-9
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We prove that the Julia set of a quadratic polynomial which admits an infinite sequence of unbranched, simple renormalizations with complex bounds is locally connected. The method in this study is three-dimensional puzzles.
机构:
Univ Pretoria, Dept Math & Appl Math, Pretoria, South Africa
Univ Pretoria, Dept Math & Appl Math, ZA-0028 Pretoria, South AfricaUniv Pretoria, Dept Math & Appl Math, Pretoria, South Africa
Wiggins, Harry
Harding, Ansie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pretoria, Dept Math & Appl Math, Pretoria, South Africa
Univ Pretoria, Dept Math & Appl Math, ZA-0028 Pretoria, South AfricaUniv Pretoria, Dept Math & Appl Math, Pretoria, South Africa
Harding, Ansie
Engelbrecht, Johann
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pretoria, Dept Sci, Math & Technol Educ, Pretoria, South Africa
Univ Pretoria, Dept Sci Math & Technol Educ, ZA-0028 Pretoria, South AfricaUniv Pretoria, Dept Math & Appl Math, Pretoria, South Africa
机构:
Wesleyan Univ, Dept Math & Comp Sci, Middletown, CT 06459 USAWesleyan Univ, Dept Math & Comp Sci, Middletown, CT 06459 USA
Chan, Wai Kiu
Oh, Byeong-Kweon
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
Seoul Natl Univ, Res Inst Math, Seoul 151747, South KoreaWesleyan Univ, Dept Math & Comp Sci, Middletown, CT 06459 USA
Oh, Byeong-Kweon
DIOPHANTINE METHODS, LATTICES, AND ARITHMETIC THEORY OF QUADRATIC FORMS,
2013,
587
: 31
-
+