A generalizable and accessible approach to machine learning with global satellite imagery

被引:54
|
作者
Rolf, Esther [1 ,2 ]
Proctor, Jonathan [3 ]
Carleton, Tamma [4 ,5 ]
Bolliger, Ian [2 ,6 ]
Shankar, Vaishaal [1 ]
Ishihara, Miyabi [2 ,7 ]
Recht, Benjamin [1 ]
Hsiang, Solomon [2 ,5 ,8 ]
机构
[1] Univ Calif Berkeley, Elect Engn & Comp Sci Dept, Berkeley, CA USA
[2] Univ Calif Berkeley, Goldman Sch Publ Policy, Global Policy Lab, Berkeley, CA USA
[3] Harvard Univ, Ctr Environm & Data Sci Initiat, Cambridge, MA 02138 USA
[4] UC Santa Barbara, Bren Sch Environm Sci & Management, Santa Barbara, CA USA
[5] Natl Bur Econ Res, Cambridge, MA 02138 USA
[6] Rhodium Grp, New York, NY USA
[7] Univ Calif Berkeley, Stat Dept, Berkeley, CA USA
[8] Ctr Econ Policy Res, London, England
关键词
BIG DATA;
D O I
10.1038/s41467-021-24638-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Combining satellite imagery with machine learning (SIML) has the potential to address global challenges by remotely estimating socioeconomic and environmental conditions in data-poor regions, yet the resource requirements of SIML limit its accessibility and use. We show that a single encoding of satellite imagery can generalize across diverse prediction tasks (e.g., forest cover, house price, road length). Our method achieves accuracy competitive with deep neural networks at orders of magnitude lower computational cost, scales globally, delivers label super-resolution predictions, and facilitates characterizations of uncertainty. Since image encodings are shared across tasks, they can be centrally computed and distributed to unlimited researchers, who need only fit a linear regression to their own ground truth data in order to achieve state-of-the-art SIML performance. This paper presents MOSAIKS, a system for planet-scale prediction of multiple outcomes using satellite imagery and machine learning (SIML). MOSAIKS generalizes across prediction domains and has the potential to enhance accessibility of SIML across research disciplines.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Successful classification of cocaine dependence using brain imaging: a generalizable machine learning approach
    Mutlu Mete
    Unal Sakoglu
    Jeffrey S. Spence
    Michael D. Devous
    Thomas S. Harris
    Bryon Adinoff
    BMC Bioinformatics, 17
  • [32] Analysis of the hyperparameter optimisation of four machine learning satellite imagery classification methods
    Alonso-Sarria, Francisco
    Valdivieso-Ros, Carmen
    Gomariz-Castillo, Francisco
    COMPUTATIONAL GEOSCIENCES, 2024, 28 (03) : 551 - 571
  • [33] Automated Underground Water Leakage Detection with Machine Learning Analysis of Satellite Imagery
    Arabi, Shiva
    Grau, David
    CONSTRUCTION RESEARCH CONGRESS 2024: SUSTAINABILITY, RESILIENCE, INFRASTRUCTURE SYSTEMS, AND MATERIALS DESIGN IN CONSTRUCTION, 2024, : 741 - 750
  • [34] Automatic Mapping of Deciduous and Evergreen Forest by Using Machine Learning and Satellite Imagery
    Saini, Rashmi
    Singh, Suraj
    Verma, Shashi Kant
    Hatture, Sanjeevakumar M.
    SOFT COMPUTING AND ITS ENGINEERING APPLICATIONS, ICSOFTCOMP 2022, 2023, 1788 : 197 - 209
  • [35] Satellite imagery and machine learning for identification of aridity risk in central Java Indonesia
    Prasetyo S.Y.J.
    Hartomo K.D.
    Paseleng M.C.
    PeerJ Computer Science, 2021, 7 : 1 - 21
  • [36] Surveying Nearshore Bathymetry Using Multispectral and Hyperspectral Satellite Imagery and Machine Learning
    Hartmann, David
    Gravey, Mathieu
    Price, Timothy David
    Nijland, Wiebe
    de Jong, Steven Michael
    REMOTE SENSING, 2025, 17 (02)
  • [37] Pumice Raft Detection Using Machine-Learning on Multispectral Satellite Imagery
    Zheng, Maggie
    Mittal, Tushar
    Fauria, Kristen E.
    Subramaniam, Ajit
    Jutzeler, Martin
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [38] Machine learning improves satellite imagery analysis of North Korean nuclear activity
    Park, Sulgiye
    Puccioni, Allison
    Ewing, Rodney C.
    BULLETIN OF THE ATOMIC SCIENTISTS, 2022, 78 (01) : 26 - 37
  • [39] Predicting cell phone adoption metrics using machine learning and satellite imagery
    Oughton, Edward J.
    Mathur, Jatin
    TELEMATICS AND INFORMATICS, 2021, 62
  • [40] Land Cover Prediction from Satellite Imagery Using Machine Learning Techniques
    Panda, Abhisek
    Singh, Abhisek
    Kumar, Keshav
    Kumar, Akash
    Uddeshya
    Swetapadma, Aleena
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT), 2018, : 1403 - 1407