Successful classification of cocaine dependence using brain imaging: a generalizable machine learning approach

被引:0
|
作者
Mutlu Mete
Unal Sakoglu
Jeffrey S. Spence
Michael D. Devous
Thomas S. Harris
Bryon Adinoff
机构
[1] Texas A&M University-Commerce,Department of Computer Science and Information Systems
[2] University of Houston – Clear Lake,Computer Engineering
[3] University of Texas at Dallas,Center for Brain Health
[4] UT Southwestern Medical Center,Department of Neurology
[5] Avid Radiopharmaceuticals,Department of Psychiatry
[6] Veterans Affairs North Texas Health Care System,undefined
[7] UT Southwestern Medical Center,undefined
来源
关键词
Substance use disorders; Cocaine dependence; Machine learning; Support vector machines; Classification;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Successful classification of cocaine dependence using brain imaging: a generalizable machine learning approach
    Mete, Mutlu
    Sakoglu, Unal
    Spence, Jeffrey S.
    Devous, Michael D., Sr.
    Harris, Thomas S.
    Adinoff, Bryon
    [J]. BMC BIOINFORMATICS, 2016, 17
  • [2] Canopy classification using LiDAR: a generalizable machine learning approach
    Jones, R. Sky
    Elkadiri, Racha
    Momm, Henrique
    [J]. MODELING EARTH SYSTEMS AND ENVIRONMENT, 2023, 9 (02) : 2371 - 2384
  • [3] Canopy classification using LiDAR: a generalizable machine learning approach
    R. Sky Jones
    Racha Elkadiri
    Henrique Momm
    [J]. Modeling Earth Systems and Environment, 2023, 9 : 2371 - 2384
  • [4] Extreme Learning Machine as a Generalizable Classification Engine
    Zyarah, Abdullah M.
    Kudithipudi, Dhireesha
    [J]. 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 3371 - 3376
  • [5] Brain Image Classification using Learning Machine Approach and Brain Structure Analysis
    Veeramuthu, A.
    Meenakshi, S.
    Darsini, V. Priya
    [J]. BIG DATA, CLOUD AND COMPUTING CHALLENGES, 2015, 50 : 388 - 394
  • [6] Multiclass Brain Tumor Classification Using Hyperspectral Imaging and Supervised Machine Learning
    Ruiz, Luisa
    Martin, Alberto
    Urbanos, Gemma
    Villanueva, Marta
    Sancho, Jaime
    Rosa, Gonzalo
    Villa, Manuel
    Chavarrias, Miguel
    Perez, Angel
    Juarez, Eduardo
    Lagares, Alfonso
    Sanz, Cesar
    [J]. 2020 XXXV CONFERENCE ON DESIGN OF CIRCUITS AND INTEGRATED SYSTEMS (DCIS), 2020,
  • [7] Cocaine Dependent Classification Using Brain Magnetic Resonance Imaging
    Termenon, M.
    Grana, Manuel
    Barros-Loscertales, A.
    Bustamante, J. C.
    Avila, C.
    [J]. HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT II, 2012, 7209 : 448 - 454
  • [8] Metallographic Specimen Imaging Classification: A Machine Learning Approach
    Soares, Fabrizzio Alphonsus A. M. N.
    Queiroz Junior, Manoel I.
    Salvini, Rogerio
    [J]. 2018 IEEE CANADIAN CONFERENCE ON ELECTRICAL & COMPUTER ENGINEERING (CCECE), 2018,
  • [9] A Machine Learning Approach for MRI Brain Tumor Classification
    Gurusamy, Ravikumar
    Subramaniam, Vijayan
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2017, 53 (02): : 91 - 108
  • [10] An Enhanced Machine Learning Approach for Brain MRI Classification
    Siddiqi, Muhammad Hameed
    Azad, Mohammad
    Alhwaiti, Yousef
    [J]. DIAGNOSTICS, 2022, 12 (11)