Syntax-aware Natural Language Inference with Graph Matching Networks

被引:1
|
作者
Lin, Yan-Tong [1 ]
Wu, Meng-Tse [2 ]
Su, Keh-Yih [2 ]
机构
[1] Natl Chiao Tung Univ, Dept Comp Sci, Hsinchu, Taiwan
[2] Acad Sinica, Inst Informat Sci, Taipei, Taiwan
关键词
graph neural networks; recognize textual entailment; natural language inference; dependency tree; NLI;
D O I
10.1109/TAAI51410.2020.00024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The task of entailment judgment aims to determine whether a hypothesis is true (entailment), false (contradiction), or undetermined (neutral) given a premise. While previous methods strike successful in several benchmarks and even exceed the human baseline, recent researches show that it remains arguable if the methods learn the statistical bias in the datasets. In this paper, we propose the syntax-aware Natural Language Inference (SynNLI) model, which utilizes graph matching networks to obtain syntax-guided contextualized representation while aligning the premise and the hypothesis accordingly. We show that the proposed method outperforms multiple baseline models on MNLI develop set, and visualize the model internal behavior.
引用
收藏
页码:85 / 90
页数:6
相关论文
共 50 条
  • [31] Context, Structure and Syntax-aware RST Discourse Parsing
    Desai, Takshak
    Moldovan, Dan, I
    2021 IEEE 15TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC 2021), 2021, : 155 - 162
  • [32] Syntax-aware entity representations for neural relation extraction
    He, Zhengqiu
    Chen, Wenliang
    Li, Zhenghua
    Zhang, Wei
    Shao, Hao
    Zhang, Min
    ARTIFICIAL INTELLIGENCE, 2019, 275 : 602 - 617
  • [33] FastGraphTTS: An Ultrafast Syntax-Aware Speech Synthesis Framework
    Wang, Jianzong
    Zhang, Xulong
    Sun, Aolan
    Cheng, Ning
    Xiao, Jing
    2023 IEEE 35TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2023, : 905 - 912
  • [34] Dependency-based syntax-aware word representations
    Zhang, Meishan
    Li, Zhenghua
    Fu, Guohong
    Zhang, Min
    ARTIFICIAL INTELLIGENCE, 2021, 292
  • [35] Syntax-Aware Network for Handwritten Mathematical Expression Recognition
    Yuan, Ye
    Liu, Xiao
    Dikubab, Wondimu
    Liu, Hui
    Ji, Zhilong
    Wu, Zhongqin
    Bai, Xiang
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 4543 - 4552
  • [36] Syntax-aware Transformer Encoder for Neural Machine Translation
    Duan, Sufeng
    Zhao, Hai
    Zhou, Junru
    Wang, Rui
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2019, : 396 - 401
  • [37] A Unified Syntax-aware Framework for Semantic Role Labeling
    Zuchao, Li
    He, Shexia
    Cai, Jiaxun
    Zhang, Zhuosheng
    Zhao, Hai
    Liu, Gongshen
    Li, Linlin
    Si, Luo
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 2401 - 2411
  • [38] A Syntax-Aware Re-ranker for Microblog Retrieval
    Severyn, Aliaksei
    Moschitti, Alessandro
    Tsagkias, Manos
    Berendsen, Richard
    de Rijke, Maarten
    SIGIR'14: PROCEEDINGS OF THE 37TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2014, : 1067 - 1070
  • [39] Syntax-aware Neural Semantic Role Labeling with Supertags
    Kasai, Jungo
    Friedman, Dan
    Frank, Robert
    Radev, Dragomir
    Rambow, Owen
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 701 - 709
  • [40] Syntax-Enhanced Neural Machine Translation with Syntax-Aware Word Representations
    Zhang, Meishan
    Li, Zhenghua
    Fu, Guohong
    Zhang, Min
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 1151 - 1161