Syntax-aware Natural Language Inference with Graph Matching Networks

被引:1
|
作者
Lin, Yan-Tong [1 ]
Wu, Meng-Tse [2 ]
Su, Keh-Yih [2 ]
机构
[1] Natl Chiao Tung Univ, Dept Comp Sci, Hsinchu, Taiwan
[2] Acad Sinica, Inst Informat Sci, Taipei, Taiwan
关键词
graph neural networks; recognize textual entailment; natural language inference; dependency tree; NLI;
D O I
10.1109/TAAI51410.2020.00024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The task of entailment judgment aims to determine whether a hypothesis is true (entailment), false (contradiction), or undetermined (neutral) given a premise. While previous methods strike successful in several benchmarks and even exceed the human baseline, recent researches show that it remains arguable if the methods learn the statistical bias in the datasets. In this paper, we propose the syntax-aware Natural Language Inference (SynNLI) model, which utilizes graph matching networks to obtain syntax-guided contextualized representation while aligning the premise and the hypothesis accordingly. We show that the proposed method outperforms multiple baseline models on MNLI develop set, and visualize the model internal behavior.
引用
收藏
页码:85 / 90
页数:6
相关论文
共 50 条
  • [21] Towards Syntax-Aware Editors for Visual Languages
    Costagliola, Gennaro
    Deufemia, Vincenzo
    Polese, Giuseppe
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2005, 127 (04) : 107 - 125
  • [22] Syntax-Aware Neural Semantic Role Labeling
    Xia, Qingrong
    Li, Zhenghua
    Zhang, Min
    Zhang, Meishan
    Fu, Guohong
    Wang, Rui
    Si, Luo
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 7305 - 7313
  • [23] Metapath and syntax-aware heterogeneous subgraph neural networks for spam review detection
    Zhang, Zhiqiang
    Dong, Yuhang
    Wu, Haiyan
    Song, Haiyu
    Deng, Shengchun
    Chen, Yanhong
    APPLIED SOFT COMPUTING, 2022, 128
  • [24] Syntax-aware on-the-fly code completion
    Takerngsaksiri, Wannita
    Tantithamthavorn, Chakkrit
    Li, Yuan-Fang
    INFORMATION AND SOFTWARE TECHNOLOGY, 2024, 165
  • [25] Building syntax-aware editors for visual languages
    Costagliola, G
    Deufemia, V
    Polese, G
    Risi, M
    JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2005, 16 (06): : 508 - 540
  • [26] Improving BERT with Syntax-aware Local Attention
    Li, Zhongli
    Zhou, Qingyu
    Li, Chao
    Xu, Ke
    Cao, Yunbo
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 645 - 653
  • [27] Enhancing Generalization in Natural Language Inference by Syntax
    He, Qi
    Wang, Han
    Zhang, Yue
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, 2020, : 4973 - 4978
  • [28] Syntax-Aware graph convolutional network for the recognition of chinese implicit inter-sentence relations
    Sun, Kaili
    Li, Yuan
    Zhang, Huyin
    Guo, Chi
    Yuan, Linfei
    Hu, Quan
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (14): : 16529 - 16552
  • [29] Syntax-aware Semantic Role Labeling without Parsing
    Cai, Rui
    Lapata, Mirella
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2019, 7 : 343 - 356
  • [30] Syntax-aware Semantic Role Labeling without Parsing
    Cai R.
    Lapata M.
    Transactions of the Association for Computational Linguistics, 2019, 7 : 343 - 356