Stochastic multiresonance in a chaotic map with fractal basins of attraction

被引:19
|
作者
Matyjaskiewicz, S
Krawiecki, A
Holyst, JA
Kacperski, K
Ebeling, W
机构
[1] Warsaw Univ Technol, Fac Phys, PL-00662 Warsaw, Poland
[2] Humboldt Univ, Inst Phys, D-10115 Berlin, Germany
[3] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 02期
关键词
D O I
10.1103/PhysRevE.63.026215
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Noise-free stochastic resonance in a chaotic kicked spin model at the edge of the attractor merging crisis is considered. The output signal reflects the occurrence of crisis-induced jumps between the two parts of the attractor. As the control parameter-the amplitude of the magnetic field pulses-is varied, the signal-to-noise ratio shows plateaus and multiple maxima, thus stochastic multilesonance is observed. It is shown that the multiresonance occurs due to a fractal structure of the precritical attractors and their basins. In the adiabatic approximation theoretical expression for the signal-to-noise ratio is derived, based on the theory of oscillations in average crisis-induced transient lifetimes. Numerical and theoretical results agree quantitatively just above the threshold for crisis and qualitatively in a wide range of the control parameter.
引用
收藏
页码:026215 / 026211
页数:10
相关论文
共 50 条
  • [41] Parametric analysis and fractal-like basins of attraction by modified interpolated cell mapping
    Ge, ZM
    Tsen, PC
    Lee, SC
    [J]. JOURNAL OF SOUND AND VIBRATION, 2002, 253 (03) : 711 - 723
  • [42] Graphical Structure of Attraction Basins of Hidden Chaotic Attractors: The Rabinovich-Fabrikant System
    Danca, Marius-F
    Bourke, Paul
    Kuznetsov, Nikolay
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (01):
  • [43] Deterministic stochastic resonance in a piecewise linear chaotic map
    Sinha, S
    Chakrabarti, BK
    [J]. PHYSICAL REVIEW E, 1998, 58 (06): : 8009 - 8012
  • [44] INTERTWINED BASINS OF ATTRACTION
    Ding, Changming
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (06):
  • [45] Perturbed Basins of Attraction
    Han Peters
    [J]. Mathematische Annalen, 2007, 337 : 1 - 13
  • [46] Perturbed basins of attraction
    Peters, Han
    [J]. MATHEMATISCHE ANNALEN, 2007, 337 (01) : 1 - 13
  • [47] Abstract Basins of Attraction
    Arosio, Leandro
    [J]. COMPLEX ANALYSIS AND GEOMETRY, KSCV 10, 2015, 144 : 57 - 66
  • [48] Stochastic multiresonance in the coupled relaxation oscillators
    Volkov, EI
    Ullner, E
    Kurths, J
    [J]. CHAOS, 2005, 15 (02)
  • [49] Noise-free aperiodic stochastic multiresonance
    Matyjaskiewicz, S
    Krawiecki, A
    Holyst, JA
    [J]. ACTA PHYSICA POLONICA B, 2003, 34 (07): : 3511 - 3522
  • [50] Stochastic multiresonance in oscillators induced by bounded noise
    Bobryk, R., V
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 93