Perturbed basins of attraction

被引:9
|
作者
Peters, Han [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
D O I
10.1007/s00208-005-0739-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be an automorphism of C-k which has an attracting fixed point. It is well known that the basin of attraction is biholomorphically equivalent to C-k. We will show that the basin of attraction of a sequence of automorphisms f(1), f(2), . . . is also biholomorphic to C-k if every f(n) is a small perturbation of the original map F.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] Perturbed Basins of Attraction
    Han Peters
    [J]. Mathematische Annalen, 2007, 337 : 1 - 13
  • [2] Basins of attraction
    Nusse, HE
    Yorke, JA
    [J]. SCIENCE, 1996, 271 (5254) : 1376 - 1380
  • [3] INTERTWINED BASINS OF ATTRACTION
    Ding, Changming
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (06):
  • [4] Abstract Basins of Attraction
    Arosio, Leandro
    [J]. COMPLEX ANALYSIS AND GEOMETRY, KSCV 10, 2015, 144 : 57 - 66
  • [5] Effortless estimation of basins of attraction
    Datseris, George
    Wagemakers, Alexandre
    [J]. CHAOS, 2022, 32 (02)
  • [6] Basins of attraction in human balance
    Victoria A. Smith
    Thurmon E. Lockhart
    Mark L. Spano
    [J]. The European Physical Journal Special Topics, 2017, 226 : 3315 - 3324
  • [7] Basins of attraction for chimera states
    Martens, Erik A.
    Panaggio, Mark J.
    Abrams, Daniel M.
    [J]. NEW JOURNAL OF PHYSICS, 2016, 18
  • [8] Classifying and quantifying basins of attraction
    Sprott, J. C.
    Xiong, Anda
    [J]. CHAOS, 2015, 25 (08)
  • [9] BASINS OF ATTRACTION IN LOEWNER EQUATIONS
    Arosio, Leandro
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2012, 37 (02) : 563 - 570
  • [10] Basins of attraction on random topography
    Schorghofer, N
    Rothman, DH
    [J]. PHYSICAL REVIEW E, 2001, 63 (02):