On the structural basis of peptide-bond formation and antibiotic resistance from atomic structures of the large ribosomal subunit

被引:26
|
作者
Steitz, TA
机构
[1] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[2] Howard Hughes Med Inst, New Haven, CT 06520 USA
来源
FEBS LETTERS | 2005年 / 579卷 / 04期
关键词
ribosome structure; antibiotics; RNA structure; ribozyme; peptidyl transferase mechanism;
D O I
10.1016/j.febslet.2004.11.053
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The atomic structures of the large ribosomal subunit from Haloarcula marismortui and its complexes with substrates and antibiotics have provided insights into the way the 3000 nucleotide 23S rRNA folds into a compact, specific structure and interacts with 27 ribosomal proteins as well as the structural basis of the peptidyl transferase reaction and its inhibition by antibiotics. The structure shows that the ribosome is indeed a ribozvme. (C) 2064 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:955 / 958
页数:4
相关论文
共 50 条
  • [21] Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex
    Lyumkis, Dmitry
    dos Passos, Dario Oliveira
    Tahara, Erich B.
    Webb, Kristofor
    Bennett, Eric J.
    Vinterbo, Staal
    Potter, Clinton S.
    Carragher, Bridget
    Joazeiro, Claudio A. P.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (45) : 15981 - 15986
  • [22] THE IMPORTANCE OF CONSERVED NUCLEOTIDES OF 23-S RIBOSOMAL-RNA AND TRANSFER-RNA IN RIBOSOME CATALYZED PEPTIDE-BOND FORMATION
    LIEBERMAN, KR
    DAHLBERG, AE
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1994, 269 (23) : 16163 - 16169
  • [23] TRANSLATIONAL CONTROL OF RIBOSOMAL-PROTEIN L10 SYNTHESIS OCCURS PRIOR TO FORMATION OF 1ST PEPTIDE-BOND
    ROBAKIS, N
    MEZABASSO, L
    BROT, N
    WEISSBACH, H
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1981, 78 (07): : 4261 - 4264
  • [24] QUANTUM CHEMICAL STUDIES OF A MODEL FOR PEPTIDE-BOND FORMATION - FORMATION OF FORMAMIDE AND WATER FROM AMMONIA AND FORMIC-ACID
    OIE, T
    LOEW, GH
    BURT, SK
    BINKLEY, JS
    MACELROY, RD
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1982, 104 (23) : 6171 - 6174
  • [25] PEPTIDE-BOND SYNTHESIS IN HIGHER PLANTS .3. THE FORMATION OF GLUTATHIONE FROM GAMMA-GLUTAMYLCYSTEINE
    WEBSTER, GC
    VARNER, JE
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1955, 55 (01) : 95 - 103
  • [26] POLY(U)-DIRECTED PEPTIDE-BOND FORMATION FROM THE 2'(3')-GLYCYL ESTERS OF ADENOSINE DERIVATIVES
    WEBER, AL
    ORGEL, LE
    JOURNAL OF MOLECULAR EVOLUTION, 1980, 16 (01) : 1 - 10
  • [27] Pol5 is required for recycling of small subunit biogenesis factors and for formation of the peptide exit tunnel of the large ribosomal subunit
    Braun, Christina M.
    Hackert, Philipp
    Schmid, Catharina E.
    Bohnsack, Markus T.
    Bohnsack, Katherine E.
    Perez-Fernandez, Jorge
    NUCLEIC ACIDS RESEARCH, 2020, 48 (01) : 405 - 420
  • [29] THEORETICAL INVESTIGATION OF THE ROLE OF CLAY EDGES IN PREBIOTIC PEPTIDE-BOND FORMATION .2. STRUCTURES AND THERMODYNAMICS OF THE ACTIVATED COMPLEX SPECIES
    COLLINS, JR
    LOEW, GH
    LUKE, BT
    WHITE, DH
    ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES, 1988, 18 (1-2): : 107 - 119
  • [30] Structural basis for the inability of chloramphenicol to inhibit peptide bond formation in the presence of A-site glycine
    Syroegin, Egor A.
    Aleksandrova, Elena, V
    Polikanov, Yury S.
    NUCLEIC ACIDS RESEARCH, 2022, 50 (13) : 7669 - 7679