Human Object Detection in Forest with Deep Learning based on Drone's Vision

被引:0
|
作者
Yong, Suet-Peng [1 ]
Yeong, Yoon-Chow [1 ]
机构
[1] Univ Teknol PETRONAS, Comp & Informat Sci Dept, Seri Iskandar 32610, Perak Darul Rid, Malaysia
来源
2018 4TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCOINS) | 2018年
关键词
drone; deep-learning; object detection; forest surveillance;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the past decade, various new and impressive applications have been developed and implemented on drones, for instance search and rescue, surveillance, traffic monitoring, weather monitoring and so on. The current advances in drone technology provoked significant changes in enabling drones to perform a wide range of missions with increasing level of complexity. Missions such as search and rescue or forest surveillance require a large camera coverage and thus making drone a suitable tool to perform advanced tasks. Meanwhile, the increasing trend of deep learning applications in computer vision provides a remarkable insight into the initiative of this project. This paper presents a technique which allows detecting the existence of human in forestry environment with human object detection algorithm using deep learning framework. The purpose of detecting human existence in forestry area is to reduce illegal forestry activities such as illegal entry into prohibited area and illegal logging activities. Also, the outcome of this project is expected to aggrandize the usage of drone for forest surveillance purpose to save time and cost.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Object Detection Using Deep Learning, CNNs and Vision Transformers: A Review
    Amjoud, Ayoub Benali
    Amrouch, Mustapha
    IEEE ACCESS, 2023, 11 : 35479 - 35516
  • [32] Deep Learning based Compressed Sensing in Machine Vision: An Iterative Approach to Multi Object Detection
    Birk, A.
    Frenner, K.
    Osten, W.
    FIFTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION, ICMV 2022, 2023, 12701
  • [33] Learning Deep Sensorimotor Policies for Vision-based Autonomous Drone Racing
    Fu, Jiawei
    Song, Yunlong
    Wu, Yan
    Yu, Fisher
    Scaramuzza, Davide
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 5243 - 5250
  • [34] DRONE IMAGERY FOREST FIRE DETECTION AND CLASSIFICATION USING MODIFIED DEEP LEARNING MODEL
    Mashraqi, Aisha M.
    Asiri, Yousef
    Algarni, Abeer D.
    Abu-zinadah, Hanaa
    THERMAL SCIENCE, 2022, 26 : S411 - S423
  • [35] DRONE IMAGERY FOREST FIRE DETECTION AND CLASSIFICATION USING MODIFIED DEEP LEARNING MODEL
    Mashraqi, Aisha M.
    Asiri, Yousef
    Algarni, Abeer D.
    Abu-Zinadah, Hanaa
    THERMAL SCIENCE, 2022, 26 : 411 - 423
  • [36] Exploiting drone images for forest fire detection using metaheuristics with deep learning model
    Rajalakshmi, S.
    Sellam
    Kannan, N.
    Saranya, S.
    GLOBAL NEST JOURNAL, 2023, 25 (07): : 147 - 154
  • [37] Optimized deep learning vision system for human action recognition from drone images
    Hussein Samma
    Ali Salem Bin Sama
    Multimedia Tools and Applications, 2024, 83 : 1143 - 1164
  • [38] DRONE IMAGERY FOREST FIRE DETECTION AND CLASSIFICATION USING MODIFIED DEEP LEARNING MODEL
    Mashraqi, Aisha M.
    Asiri, Yousef
    Algarni, Abeer D.
    Abu-Zinadah, Hanaa
    Thermal Science, 2022, 26 (Special Issue 1):
  • [39] Optimized deep learning vision system for human action recognition from drone images
    Samma, Hussein
    Bin Sama, Ali Salem
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (1) : 1143 - 1164
  • [40] A Review of Machine Learning and Deep Learning for Object Detection, Semantic Segmentation, and Human Action Recognition in Machine and Robotic Vision
    Manakitsa, Nikoleta
    Maraslidis, George S.
    Moysis, Lazaros
    Fragulis, George F.
    TECHNOLOGIES, 2024, 12 (02)