DRONE IMAGERY FOREST FIRE DETECTION AND CLASSIFICATION USING MODIFIED DEEP LEARNING MODEL

被引:0
|
作者
Mashraqi, Aisha M. [1 ]
Asiri, Yousef [1 ]
Algarni, Abeer D. [2 ]
Abu-zinadah, Hanaa [3 ]
机构
[1] Najran Univ, Coll Comp Sci & Informat Syst, Dept Comp Sci, Najran, Saudi Arabia
[2] Princess Nourah bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Technol, Riyadh, Saudi Arabia
[3] Univ Jeddah, Coll Sci, Dept Stat, Jeddah, Saudi Arabia
来源
THERMAL SCIENCE | 2022年 / 26卷
关键词
forest fire; computer vision; drone imagery; deep learning; metaheuristics; machine learning;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
With the progression of information technologies, unmanned aerial vehicles (UAV) or drones are more significant in remote monitoring the environment. One main application of UAV technology relevant to nature monitoring is monitoring wild animals. Among several natural disasters, Wildfires are one of the deadliest and cause damage to millions of hectares of forest lands or resources which threatens the lives of animals and people. Drones present novel features and con-venience which include rapid deployment, adjustable and wider viewpoints, less human intervention, and high maneuverability. With the effective enforcement of deep learning in many applications, it is used in the domain of forest fire recogni-tion for enhancing the accuracy of forest fire detection through extraction of deep semantic features from images. This article concentrates on the design of the drone imagery forest fire detection and classification using modified deep lear-ning (DIFFDC-MDL) model. The presented DIFFDC-MDL model aims in the detection and classification of forest fire in drone imagery. To accomplish this, the presented DIFFDC-MDL model designs a modified MobileNet-v2 model to generate feature vectors. For forest fire classification, a simple recurrent unit model is applied in this study. In order to further improve the classification out-comes, shuffled frog leap algorithm is used. The simulation outcome analysis of the DIFFDC-MDL system was tested utilizing a database comprising fire and non-fire samples. The extensive comparison study referred that the improvements of the DIFFDC-MDL system over other recent algorithms.
引用
收藏
页码:S411 / S423
页数:13
相关论文
共 50 条
  • [1] DRONE IMAGERY FOREST FIRE DETECTION AND CLASSIFICATION USING MODIFIED DEEP LEARNING MODEL
    Mashraqi, Aisha M.
    Asiri, Yousef
    Algarni, Abeer D.
    Abu-Zinadah, Hanaa
    THERMAL SCIENCE, 2022, 26 : 411 - 423
  • [2] DRONE IMAGERY FOREST FIRE DETECTION AND CLASSIFICATION USING MODIFIED DEEP LEARNING MODEL
    Mashraqi, Aisha M.
    Asiri, Yousef
    Algarni, Abeer D.
    Abu-Zinadah, Hanaa
    Thermal Science, 2022, 26 (Special Issue 1):
  • [3] Exploiting drone images for forest fire detection using metaheuristics with deep learning model
    Rajalakshmi, S.
    Sellam
    Kannan, N.
    Saranya, S.
    GLOBAL NEST JOURNAL, 2023, 25 (07): : 147 - 154
  • [4] Drone Detection and Classification using Deep Learning
    Behera, Dinesh Kumar
    Raj, Arockia Bazil
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 1012 - 1016
  • [5] BurNet: Automated Deep Learning System for Fire and Smoke Detection from Drone Imagery
    Narayanan, Barath Narayanan
    Beigh, Kelly
    Davuluru, Venkata Salini Priyamvada
    Aurell, Johanna
    Gullett, Brian
    Proceedings of SPIE - The International Society for Optical Engineering, 2024, 13138
  • [6] Forest Farm Fire Drone Monitoring System Based on Deep Learning and Unmanned Aerial Vehicle Imagery
    Zheng, Shaoxiong
    Wang, Weixing
    Liu, Zeqian
    Wu, Zepeng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [7] Deep learning based drone detection and classification
    Yi K.Y.
    Kyeong D.
    Seo K.
    Transactions of the Korean Institute of Electrical Engineers, 2019, 68 (02): : 359 - 363
  • [8] Deep Learning Based Forest Fire Classification and Detection in Satellite Images
    Priya, R. Shanmuga
    Vani, K.
    2019 11TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC 2019), 2019, : 61 - 65
  • [9] Hybrid deep learning for object detection in drone imagery: a new metaheuristic based model
    Ajith, V. S.
    Jolly, K. G.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 8551 - 8589
  • [10] Hybrid deep learning for object detection in drone imagery: a new metaheuristic based model
    Ajith V S
    Jolly K G
    Multimedia Tools and Applications, 2024, 83 : 8551 - 8589