Topological classification of integrable Hamiltonian systems in a potential field on surfaces of revolution

被引:10
|
作者
Kantonistova, E. O. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
integrable Hamiltonian systems; surfaces of revolution; Fomenko-Zieschang invariant; lattices of action variables; RIGID-BODY DYNAMICS; ORBITALLY EQUIVALENT; GEODESIC-FLOWS; JACOBI PROBLEM; SYMMETRIES; MANIFOLDS;
D O I
10.1070/SM8558
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A topological classification, up to Liouville (leafwise) equivalence of integrable Hamiltonian systems given by flows with a smooth potential on two-dimensional surfaces of revolution is presented. It is shown that the restrictions of such systems to three-dimensional isoenergy surfaces can be modelled by the geodesic flows (without potential) of certain surfaces of revolution. It is also shown that in many important cases the systems under consideration are equivalent to other well-known mechanical systems.
引用
收藏
页码:358 / 399
页数:42
相关论文
共 50 条
  • [41] Topological classification of Hamiltonian systems on two-dimensional noncompact manifolds
    Nikolaenko, S. S.
    SBORNIK MATHEMATICS, 2020, 211 (08) : 1127 - 1158
  • [42] SEPARATRIX SURFACES AND INVARIANT-MANIFOLDS OF A CLASS OF INTEGRABLE HAMILTONIAN-SYSTEMS AND THEIR PERTURBATIONS
    LLIBRE, J
    NUNES, A
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 107 (513) : R7 - 191
  • [43] Topological Geometry and Control for Distributed Port-Hamiltonian Systems with Non-Integrable Structures
    Nishida, Gou
    Maschke, Bernhard
    Yamakita, Masaki
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 1291 - 1297
  • [44] Polynomial entropies and integrable Hamiltonian systems
    Marco, Jean-Pierre
    REGULAR & CHAOTIC DYNAMICS, 2013, 18 (06): : 623 - 655
  • [45] A REMARK ON INTEGRABLE HAMILTONIAN-SYSTEMS
    FLASCHKA, H
    PHYSICS LETTERS A, 1988, 131 (09) : 505 - 508
  • [46] Global properties of integrable Hamiltonian systems
    Lukina, O. V.
    Takens, F.
    Broer, H. W.
    REGULAR & CHAOTIC DYNAMICS, 2008, 13 (06): : 602 - 644
  • [47] Global properties of integrable Hamiltonian systems
    O. V. Lukina
    F. Takens
    H. W. Broer
    Regular and Chaotic Dynamics, 2008, 13 : 602 - 644
  • [48] REMARK ON INTEGRABLE HAMILTONIAN-SYSTEMS
    RUSSMANN, H
    CELESTIAL MECHANICS, 1980, 21 (01): : 121 - 125
  • [49] Polynomial entropies and integrable Hamiltonian systems
    Jean-Pierre Marco
    Regular and Chaotic Dynamics, 2013, 18 : 623 - 655
  • [50] Kinetic equations and integrable hamiltonian systems
    Belokolos E.D.
    Ukrainian Mathematical Journal, 2005, 57 (6) : 869 - 882