Nonautonomous Hamiltonian systems related to higher Hitchin integrals

被引:3
|
作者
Levin, AM
Olshanetsky, MA
机构
[1] Max Planck Inst Math, D-5300 Bonn, Germany
[2] Russian Acad Sci, Inst Oceanol, Moscow 117218, Russia
[3] Inst Theoret & Expt Phys, Moscow 117259, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1007/BF02551395
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe nonautonomous Hamiltonian systems derived from the Hitchin integrable systems. The Hitchin integrals of motion depend on W-structures of the basic curve. The parameters of the W-structures play the role of times. In particular, the quadratic integrals depend on the complex structure (the W-2-structure) of the basic curve, and the times are coordinates in the Teichmuller space. The corresponding flows are the monodromy-preserving equations such as the Schlesinger equations, the Painleve VI Equation, and their generalizations. The equations corresponding to the higher integrals are the monodromy-preserving conditions with respect to changing the W-k-structures (k > 2). They are derived by the symplectic reduction of a gauge field theory on the basic curve interacting with the W-k-gravity. As a by-product, we obtain the classical Ward identities in this theory.
引用
收藏
页码:609 / 632
页数:24
相关论文
共 50 条
  • [21] Periodic Solutions of Nonautonomous Second Order Hamiltonian Systems
    Shi Xia LUAN An Min MAO Department of Mathematics
    Acta Mathematica Sinica,English Series, 2005, 21 (04) : 685 - 690
  • [22] On the Stability of Unforced Nonautonomous Underdamped Dissipative Hamiltonian Systems
    Androulidakis, Evangelos A.
    Alexandridis, Antonio T.
    2013 18TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2013, : 11 - 15
  • [23] First integrals of hamiltonian and non-hamiltonian systems and chaos
    Bouquet, S.
    Dewisme, A.
    Proceedings Needs on Nonlinear Evolution Equations and Dynamical Systems, 1992,
  • [24] Approximate Hamiltonian symmetries and related first integrals
    Naz, R.
    Mahomed, F. M.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2020, 125
  • [25] Inverse Jacobi multipliers and first integrals for nonautonomous differential systems
    Buică, Adriana
    García, Isaac A.
    Zeitschrift fur Angewandte Mathematik und Physik, 2014, 66 (03): : 573 - 585
  • [26] FIRST INTEGRALS OF HAMILTONIAN SYSTEMS: THE INVERSE PROBLEM
    Naz, Rehana
    Mahomed, Fazal M.
    Chaudhry, Azam
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (10): : 2829 - 2840
  • [27] Inverse Jacobi multipliers and first integrals for nonautonomous differential systems
    Buica, Adriana
    Garcia, Isaac A.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03): : 573 - 585
  • [28] Inverse Jacobi multipliers and first integrals for nonautonomous differential systems
    Adriana Buică
    Isaac A. García
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 573 - 585
  • [29] QUADRATIC INTEGRALS OF LINEAR HAMILTONIAN-SYSTEMS
    KOCAK, H
    MONATSHEFTE FUR MATHEMATIK, 1984, 98 (01): : 53 - 63
  • [30] DYNAMIC INTEGRALS OF HAMILTONIAN-SYSTEMS WITH MIXING
    BASS, FG
    KONOTOP, VV
    PANTCHEHA, AP
    PHYSICS LETTERS A, 1989, 136 (1-2) : 30 - 32