Inverse Jacobi multipliers and first integrals for nonautonomous differential systems

被引:4
|
作者
Buica, Adriana [1 ]
Garcia, Isaac A. [2 ]
机构
[1] Univ Babes Bolyai, Dept Math, Cluj Napoca 400084, Romania
[2] Univ Lleida, Dept Matemat, Lleida 25001, Spain
来源
关键词
Non-autonomous systems; inverse Jacobi multipliers; Poincare translation map; periodic solutions; EXISTENCE; R-3;
D O I
10.1007/s00033-014-0440-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider nonautonomous differential systems of arbitrary dimension and first find expressions for their inverse Jacobi multipliers and first integrals in some nonautonomous invariant set in terms of the solutions of the differential system. Given an inverse Jacobi multiplier V, we find a relation between the Poincar, translation map I at time T that extends to arbitrary dimensions the fundamental relation for scalar equations, , found in Garcia et al. (Trans Am Math Soc 362:3591-3612, 2010). The main result guarantees the existence of continua of T-periodic solutions for T-periodic systems in the presence of T-periodic first integrals and inverse Jacobi multipliers.
引用
收藏
页码:573 / 585
页数:13
相关论文
共 50 条
  • [1] Inverse Jacobi multipliers and first integrals for nonautonomous differential systems
    Adriana Buică
    Isaac A. García
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 573 - 585
  • [2] Inverse Jacobi multipliers and first integrals for nonautonomous differential systems
    Buică, Adriana
    García, Isaac A.
    Zeitschrift fur Angewandte Mathematik und Physik, 2014, 66 (03): : 573 - 585
  • [3] Inverse Jacobi multipliers
    Lucio R. Berrone
    Hector Giacomini
    Rendiconti del Circolo Matematico di Palermo, 2003, 52 (1) : 77 - 130
  • [4] Inverse Jacobi Multipliers: Recent Applications in Dynamical Systems
    Buica, Adriana
    Garcia, Isaac A.
    Maza, Susanna
    PROGRESS AND CHALLENGES IN DYNAMICAL SYSTEMS, 2013, 54 : 127 - 141
  • [5] Integrals and last multipliers of partial differential systems
    Buslyuk, DV
    DIFFERENTIAL EQUATIONS, 1999, 35 (03) : 421 - 422
  • [6] Construction of first integrals and last multipliers for polynomial autonomous many-dimensional differential systems
    Gorbuzov, VN
    DIFFERENTIAL EQUATIONS, 1998, 34 (04) : 564 - 566
  • [7] FIRST INTEGRALS OF HAMILTONIAN SYSTEMS: THE INVERSE PROBLEM
    Naz, Rehana
    Mahomed, Fazal M.
    Chaudhry, Azam
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (10): : 2829 - 2840
  • [8] Jacobi Multipliers in Integrability and the Inverse Problem of Mechanics
    Carinena, Jose F.
    Fernandez-Nunez, Jose
    SYMMETRY-BASEL, 2021, 13 (08):
  • [9] Local first integrals for systems of differential equations
    Zhang, X
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (49): : 12243 - 12253
  • [10] Local first integrals of differential systems and diffeomorphisms
    Li, WG
    Llibre, J
    Zhang, X
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (02): : 235 - 255