A modified SOR-like method for absolute value equations associated with second order cones

被引:14
|
作者
Huang, Baohua [1 ,2 ,3 ]
Li, Wen [3 ]
机构
[1] Fujian Normal Univ, Sch Math & Stat, Fuzhou 350117, Peoples R China
[2] Fujian Normal Univ, FJKLMAA, Fuzhou 350117, Peoples R China
[3] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Absolute value equations; Modified SOR-like method; Convergence; Optimal parameters; Second order cone; GENERALIZED NEWTON METHOD; ITERATION METHOD; SMOOTHING FUNCTIONS;
D O I
10.1016/j.cam.2021.113745
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a modified SOR-like method for solving absolute value equations associated with second order cones (SOCAVE in short), which is obtained by reformulating the SOCAVE as a two-by-two block nonlinear equation. The convergence analysis and error estimation of this method are established under mild assumptions on system matrix and iteration parameters. And, the optimal iteration parameters and the corresponding optimal convergence factor are studied. In particular, we present the approximate optimal iteration parameters which are independent of the number of iterations. Numerical results are given to show the efficiency of the proposed iteration method with suitable parameters. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Modified SOR-Like Method for Absolute Value Equations
    Li, Cui-Xia
    Wu, Shi-Liang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [2] A new SOR-like method for solving absolute value equations
    Dong, Xu
    Shao, Xin-Hui
    Shen, Hai-Long
    APPLIED NUMERICAL MATHEMATICS, 2020, 156 : 410 - 421
  • [3] On the SOR-like iteration method for solving absolute value equations
    Guo, Peng
    Wu, Shi-Liang
    Li, Cui-Xia
    APPLIED MATHEMATICS LETTERS, 2019, 97 : 107 - 113
  • [4] SOR-like iteration method for solving absolute value equations
    Ke, Yi-Fen
    Ma, Chang-Feng
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 311 : 195 - 202
  • [5] On the Alternative SOR-like Iteration Method for Solving Absolute Value Equations
    Zhang, Yiming
    Yu, Dongmei
    Yuan, Yifei
    SYMMETRY-BASEL, 2023, 15 (03):
  • [6] A modified generalized SOR-like method for solving an absolute value equation
    Zhang, Jia-Lin
    Zhang, Guo-Feng
    Liang, Zhao-Zheng
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (09): : 1578 - 1595
  • [7] Optimal parameter of the SOR-like iteration method for solving absolute value equations
    Cairong Chen
    Bo Huang
    Dongmei Yu
    Deren Han
    Numerical Algorithms, 2024, 96 : 799 - 826
  • [8] Optimal parameter of the SOR-like iteration method for solving absolute value equations
    Chen, Cairong
    Huang, Bo
    Yu, Dongmei
    Han, Deren
    NUMERICAL ALGORITHMS, 2024, 96 (02) : 799 - 826
  • [9] SOR-Like Method for a New Generalized Absolute Value Equation
    Yang, Shuan
    Wu, Shi-Liang
    MATHEMATICAL NOTES, 2023, 113 (3-4) : 567 - 573
  • [10] A generalized Newton method for absolute value equations associated with second order cones
    Hu, Sheng-Long
    Huang, Zheng-Hai
    Zhang, Qiong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (05) : 1490 - 1501