Splitting methods for non-autonomous linear systems

被引:10
|
作者
Blanes, Sergio
Casas, Fernando [1 ]
Murua, Ander
机构
[1] Univ Politecn Valencia, Inst Matemat Multidiciplinar, E-46022 Valencia, Spain
[2] Univ Jaume 1, Dept Math, E-12071 Castellon de La Plana, Spain
[3] UPV, EHU, Informat Fac, Donostia San Sebastian, Spain
关键词
splitting methods; non-autonomous systems; Magnus expansion;
D O I
10.1080/00207160701458567
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present splitting methods for numerically solving a certain class of explicitly time-dependent linear differential equations. Starting from an efficient method for the autonomous case and making use of the formal solution obtained with the Magnus expansion, we show how to get the order conditions for the non-autonomous case. We also build a family of sixth-order integrators whose performance is clearly superior to previous splitting methods on several numerical examples.
引用
收藏
页码:713 / 727
页数:15
相关论文
共 50 条
  • [41] Shrinking targets for non-autonomous systems
    Lopez, Marco Antonio
    NONLINEARITY, 2020, 33 (07) : 3568 - 3593
  • [42] A Study of Anticipatory Non-Autonomous Systems
    Hayashi, Yoshikatsu
    Spencer, Matthew C.
    Nasuto, Slawomir J.
    2013 INTERNATIONAL JOINT CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY & UBI-MEDIA COMPUTING (ICAST-UMEDIA), 2013, : 316 - 317
  • [43] ATTRACTIVITY IN NON-AUTONOMOUS SYSTEMS.
    Yoshizawa, Taro
    International Journal of Non-Linear Mechanics, 1985, 2 (5-6): : 519 - 528
  • [44] NORMAL FORM OF NON-AUTONOMOUS SYSTEMS
    KOSTIN, VV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1973, (08): : 693 - 696
  • [45] On the asymptotic properties of non-autonomous systems
    Shahram Saeidi
    Journal of Evolution Equations, 2010, 10 : 205 - 216
  • [46] On the asymptotic properties of non-autonomous systems
    Saeidi, Shahram
    JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (01) : 205 - 216
  • [47] NON-AUTONOMOUS BIFURCATION IN IMPULSIVE SYSTEMS
    Akhmet, M. U.
    Kashkynbayev, A.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2013, (74) : 1 - 23
  • [48] On Entropy of Non-autonomous Discrete Systems
    Canovas, Jose S.
    PROGRESS AND CHALLENGES IN DYNAMICAL SYSTEMS, 2013, 54 : 143 - 159
  • [49] Recurrence in non-autonomous dynamical systems
    Cavro, Jakub
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2019, 25 (9-10) : 1404 - 1411
  • [50] On fuzzifications of non-autonomous dynamical systems
    Shao, Hua
    Zhu, Hao
    Chen, Guanrong
    TOPOLOGY AND ITS APPLICATIONS, 2021, 297