Minimal solutions for discrete-time control systems in metric spaces

被引:0
|
作者
Zaslavski, AJ [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
complete metric space; generic property; good sequence; minimal sequence;
D O I
10.1081/NFA-120023862
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study the structure of minimal solutions for an autonomous discrete-time control system in a metric space X determined by a continuous function v : X x X --> R-1. A sequence {x(i)} (i =) (-infinity) (infinity) subset of X is called (v)-minimal if for each pair of integers m(2) > m(1) and each sequence {y(i)) (m2)(i = m1) satisfying y(j) = x(j), Sigma(i=m1)(m2-1) v(x(i) , x(i), x(i+1)) less than or equal to (2) the inequality Sigma(i=m1)(m2-1) v(x(i), x(i+1)) less than or equal to Sigma(i=m1)(m2-1) v(y(i), y(i+1)) is valid. We con sider a space of functions v : X x X --> R-1 equipped with a natural complete metric and show that for a generic function v there exists a (v)-minimal sequence.
引用
收藏
页码:637 / 651
页数:15
相关论文
共 50 条
  • [31] Robustness gradients for discrete-time control systems
    Weinmann, A
    CYBERNETICS AND SYSTEMS, 2006, 37 (04) : 283 - 292
  • [32] H∞ preview control for discrete-time systems
    Choi, C
    Tsao, TC
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2001, 123 (01): : 117 - 124
  • [33] Sliding mode control of discrete-time systems
    Koshkouei, AJ
    Zinober, ASI
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2000, 122 (04): : 793 - 802
  • [34] CONSENSUS CONTROL OF DISCRETE-TIME MULTIAGENT SYSTEMS
    Merezeanu, Daniel
    Nicolae, Maximilian
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2017, 79 (01): : 167 - 174
  • [35] Control of discrete-time systems with uncertain parameters
    Lyashevskiy, S
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 3621 - 3625
  • [36] On global controllability of discrete-time control systems
    SanMartin, LAB
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1995, 8 (03) : 279 - 297
  • [37] Quantized H∞ control for discrete-time systems
    Che, Wei-Wei
    Yang, Guang-Hong
    PROCEEDINGS OF THE 2007 IEEE CONFERENCE ON CONTROL APPLICATIONS, VOLS 1-3, 2007, : 514 - 518
  • [38] Quantized optimal control of discrete-time systems
    Corona, Daniele
    Giua, Alessandro
    Seatzu, Carla
    ETFA 2005: 10TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION, VOL 1, PTS 1 AND 2, PROCEEDINGS, 2005, : 273 - 276
  • [39] Inverse control of discrete-time multivariable systems
    Bronnikov, AV
    Borovkov, AA
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2002, 339 (03): : 335 - 345
  • [40] CONTROL OF DISCRETE-TIME DISTRIBUTED PARAMETER SYSTEMS
    LEE, KY
    BARR, RO
    CHOW, S
    SIAM JOURNAL ON CONTROL, 1972, 10 (02): : 361 - &