Extended feedback and simulation strategies for a delayed fractional-order control system

被引:4
|
作者
Huang, Chengdai [1 ]
Liu, Heng [2 ]
Chen, Xiaoping [3 ]
Cao, Jinde [4 ]
Alsaedi, Ahmed [5 ]
机构
[1] Xinyang Normal Univ, Sch Math & Stat, Xinyang 464000, Peoples R China
[2] Guangxi Univ Nationalities, Sch Sci, Nanning 530006, Peoples R China
[3] Taizhou Univ, Dept Math, Taizhou 225300, Peoples R China
[4] Southeast Univ, Sch Math, Res Ctr Complex Syst & Network Sci, Nanjing 210096, Peoples R China
[5] King Abdulaziz Univ, Dept Math, NAAM Res Grp, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Extended delay feedback; Bifurcation control; Fractional-order; Predator-prey model; BIFURCATION-ANALYSIS; NEURAL-NETWORKS; STABILITY ANALYSIS; HOPF-BIFURCATION; TIME-DELAY; MODEL; SYNCHRONIZATION; DISCRETE; DISSIPATIVITY; DYNAMICS;
D O I
10.1016/j.physa.2019.123127
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper showcases the bifurcation control of a delayed fractional predator-prey system via ingenious extended delayed feedback methodology. The gestation delay acts as a bifurcation parameter to decide the bifurcation point of the controlled system. Then it reflects that bifurcation occurs upon eliminating the devised controller. Besides, the impact of fractional orders, feedback gain and extended delay on the bifurcation point is exquisitely explored. It hints that bifurcation emergence can be efficaciously handicapped by modulating fractional order, feedback gain and extended feedback delay. The efficiency of the developed control scheme is neatly checked by simulations results. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Control and Synchronization of the Fractional-Order Lorenz Chaotic System via Fractional-Order Derivative
    Zhou, Ping
    Ding, Rui
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [42] Control of an uncertain fractional-order Liu system via fuzzy fractional-order sliding mode control
    Faieghi, Mohammad Reza
    Delavari, Hadi
    Baleanu, Dumitru
    JOURNAL OF VIBRATION AND CONTROL, 2012, 18 (09) : 1366 - 1374
  • [43] Suppressing chaos for a class of fractional-order chaotic systems by adaptive integer-order and fractional-order feedback control
    Li, Ruihong
    Li, Wei
    OPTIK, 2015, 126 (21): : 2965 - 2973
  • [44] FRACTIONAL-ORDER CONTROL STRATEGIES FOR THE ACTIVATED SLUDGE PROCESS
    Goz, Eda
    Yuceer, Mehmet
    FRESENIUS ENVIRONMENTAL BULLETIN, 2018, 27 (12): : 8071 - 8080
  • [45] Sliding Mode Control of Fractional-Order Delayed Memristive Chaotic System with Uncertainty and Disturbance
    丁大为
    刘芳芳
    陈辉
    王年
    梁栋
    CommunicationsinTheoreticalPhysics, 2017, 68 (12) : 741 - 748
  • [46] Sliding Mode Control of Fractional-Order Delayed Memristive Chaotic System with Uncertainty and Disturbance
    Ding, Da-Wei
    Liu, Fang-Fang
    Chen, Hui
    Wang, Nian
    Liang, Dong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2017, 68 (06) : 741 - 748
  • [47] Stability and bifurcation control analysis of a delayed fractional-order eco-epidemiological system
    Qi, Hao
    Zhao, Wencai
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (08):
  • [48] Stability and bifurcation control analysis of a delayed fractional-order eco-epidemiological system
    Hao Qi
    Wencai Zhao
    The European Physical Journal Plus, 137
  • [49] Linear control for synchronization of a fractional-order time-delayed chaotic financial system
    Huang, Chengdai
    Cai, Liming
    Cao, Jinde
    CHAOS SOLITONS & FRACTALS, 2018, 113 : 326 - 332
  • [50] Hopf Bifurcation Control of a Fractional-Order Delayed Turbidostat Model via a Novel Extended Hybrid Controller
    Xu, Changjin
    Ou, Wei
    Pang, Yicheng
    Cui, Qingyi
    Rahman, Mati Ur
    Farman, Muhammad
    Ahmad, Shabir
    Zeb, Anwar
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2024, 91 (02) : 367 - 413