Optimal orders of the best constants in the Littlewood-Paley inequalities

被引:3
|
作者
Xu, Quanhua [1 ,2 ]
机构
[1] Harbin Inst Technol, Inst Adv Study Math, Harbin 150001, Peoples R China
[2] Univ Bourgogne Franche Comte, Lab Math, F-25030 Besancon, France
关键词
Littlewood-Paley inequalities; Best constants; Optimal orders; de Leeuw type theorem; HARMONIC-ANALYSIS; SPACES;
D O I
10.1016/j.jfa.2022.109570
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {P-t}(t>0) be the classical Poisson semigroup on R-d and G(P) the associated Littlewood-Paley g-function operator: G(P)(f) = {integral(infinity)(0) t vertical bar partial derivative/partial derivative t P-t (f)vertical bar(2) dt)1/2. The classical Littlewood-Paley g-function inequality asserts that for any 1 < p < infinity there exist two positive constants L-t,p(P) and L-c,p(P) such that (L-t,p(P))(-1) parallel to f parallel to(p) <= parallel to G(P)(f)parallel to(p) <= L-c,p(P) parallel to f parallel to(p), f is an element of L-p (R-d). We determine the optimal orders of magnitude on pof these constants as p -> 1 and p -> infinity. We also consider similar problems for more general test functions in place of the Poisson kernel. The corresponding problem on the Littlewood-Paley dyadic square function inequality is investigated too. Let Delta be the partition of R-d into dyadic rectangles and SRthe partial sum operator associated to R. The dyadic Littlewood-Paley square function of f is S-Delta(f) = (Sigma(R is an element of Delta)vertical bar S-R(f)vertical bar(2))(1/2). For 1 < p < infinity there exist two positive constants L-c, p,d(Delta) and L-t, p,d(Delta) such that (L-t,p,d(Delta))(-1) parallel to f parallel to(p) <= parallel to S-Delta(f)parallel to p <= L-c,p,d(Delta) parallel to f parallel to(p), f is an element of L-p (R-d). We show that L-t,p,d(Delta) approximate to(d) (L-t,p,1(Delta))(d) and L-c,p,d(Delta) approximate to(d) (L-c,p,1(Delta))(d). All the previous results can be equally formulated for the dtorus T-d. We prove a de Leeuw type transference principle in the vector-valued setting. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:37
相关论文
共 50 条
  • [41] Inequalities of Littlewood-Paley type for n-harmonic functions on the polydisk
    Avetisyan, KL
    MATHEMATICAL NOTES, 2004, 75 (3-4) : 453 - 461
  • [42] Pseudo-Localization of Singular Integrals and Noncommutative Littlewood-Paley Inequalities
    Mei, Tao
    Parcet, Javier
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (08) : 1433 - 1487
  • [43] Commutators of Littlewood-Paley operators
    YanPing Chen
    Yong Ding
    Science in China Series A: Mathematics, 2009, 52 : 2493 - 2505
  • [44] COMMUTATORS OF LITTLEWOOD-PALEY SUMS
    SEGOVIA, C
    TORREA, JL
    ARKIV FOR MATEMATIK, 1993, 31 (01): : 117 - 136
  • [45] Note on a Littlewood-Paley inequality
    Wilson, JM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (12) : 3609 - 3612
  • [46] Littlewood-Paley functions and Sobolev spaces
    Chen, Jiecheng
    Fan, Dashan
    Zhao, Fayou
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 184 : 273 - 297
  • [47] LITTLEWOOD-PALEY THEOREM IN THE BA SPACES
    MA, JG
    CHINESE SCIENCE BULLETIN, 1989, 34 (18): : 1507 - 1513
  • [48] Littlewood-Paley operators with variable kernels
    Jiecheng Chen
    Yong Ding
    Dashan Fan
    Science in China Series A, 2006, 49 : 639 - 650
  • [49] A NEW TYPE OF LITTLEWOOD-PALEY PARTITION
    HARE, KE
    KLEMES, I
    ARKIV FOR MATEMATIK, 1992, 30 (02): : 297 - 309
  • [50] Estimates for Littlewood-Paley Functions and Extrapolation
    Shuichi Sato
    Integral Equations and Operator Theory, 2008, 62 : 429 - 440