Optimal orders of the best constants in the Littlewood-Paley inequalities

被引:3
|
作者
Xu, Quanhua [1 ,2 ]
机构
[1] Harbin Inst Technol, Inst Adv Study Math, Harbin 150001, Peoples R China
[2] Univ Bourgogne Franche Comte, Lab Math, F-25030 Besancon, France
关键词
Littlewood-Paley inequalities; Best constants; Optimal orders; de Leeuw type theorem; HARMONIC-ANALYSIS; SPACES;
D O I
10.1016/j.jfa.2022.109570
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {P-t}(t>0) be the classical Poisson semigroup on R-d and G(P) the associated Littlewood-Paley g-function operator: G(P)(f) = {integral(infinity)(0) t vertical bar partial derivative/partial derivative t P-t (f)vertical bar(2) dt)1/2. The classical Littlewood-Paley g-function inequality asserts that for any 1 < p < infinity there exist two positive constants L-t,p(P) and L-c,p(P) such that (L-t,p(P))(-1) parallel to f parallel to(p) <= parallel to G(P)(f)parallel to(p) <= L-c,p(P) parallel to f parallel to(p), f is an element of L-p (R-d). We determine the optimal orders of magnitude on pof these constants as p -> 1 and p -> infinity. We also consider similar problems for more general test functions in place of the Poisson kernel. The corresponding problem on the Littlewood-Paley dyadic square function inequality is investigated too. Let Delta be the partition of R-d into dyadic rectangles and SRthe partial sum operator associated to R. The dyadic Littlewood-Paley square function of f is S-Delta(f) = (Sigma(R is an element of Delta)vertical bar S-R(f)vertical bar(2))(1/2). For 1 < p < infinity there exist two positive constants L-c, p,d(Delta) and L-t, p,d(Delta) such that (L-t,p,d(Delta))(-1) parallel to f parallel to(p) <= parallel to S-Delta(f)parallel to p <= L-c,p,d(Delta) parallel to f parallel to(p), f is an element of L-p (R-d). We show that L-t,p,d(Delta) approximate to(d) (L-t,p,1(Delta))(d) and L-c,p,d(Delta) approximate to(d) (L-c,p,1(Delta))(d). All the previous results can be equally formulated for the dtorus T-d. We prove a de Leeuw type transference principle in the vector-valued setting. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:37
相关论文
共 50 条
  • [21] Complex convexity and vector-valued littlewood-paley inequalities
    Blasco, O
    Pavlovic, M
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 : 749 - 758
  • [22] Sharp weighted norm inequalities for the commutator of Littlewood-Paley operators
    Chen, Yanping
    Han, Han
    GEORGIAN MATHEMATICAL JOURNAL, 2014, 21 (02) : 147 - 156
  • [23] Littlewood-Paley functionals on graphs
    Feneuil, Joseph
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (11-12) : 1254 - 1285
  • [24] A Littlewood-Paley type inequality
    Stevic, S
    BULLETIN BRAZILIAN MATHEMATICAL SOCIETY, 2003, 34 (02): : 211 - 217
  • [25] A Littlewood-Paley type inequality
    Stevo Stević
    Bulletin of the Brazilian Mathematical Society, 2003, 34 : 211 - 217
  • [26] PROPERTIES OF LITTLEWOOD-PALEY SETS
    HARE, KE
    KLEMES, I
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1989, 105 : 485 - 494
  • [27] On multilinear Littlewood-Paley operators
    Chen, Xi
    Xue, Qingying
    Yabuta, Kozo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 115 : 25 - 40
  • [28] Commutators of Littlewood-Paley operators
    Chen YanPing
    Ding Yong
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (11): : 2493 - 2505
  • [29] VARIANTS OF LITTLEWOOD-PALEY THEORY
    COWLING, M
    FENDLER, G
    FOURNIER, JJF
    MATHEMATISCHE ANNALEN, 1989, 285 (02) : 333 - 342
  • [30] Remarks on Littlewood-Paley Analysis
    Ho, Kwok-Pun
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (06): : 1283 - 1305