New interpretable machine-learning method for single-cell data reveals correlates of clinical response to cancer immunotherapy

被引:14
|
作者
Greene, Evan [1 ,2 ]
Finak, Greg [1 ,2 ]
D'Amico, Leonard A. [1 ,4 ]
Bhardwaj, Nina [8 ]
Church, Candice D. [5 ]
Morishima, Chihiro [5 ]
Ramchurren, Nirasha [1 ,4 ]
Taube, Janis M. [6 ,7 ]
Nghiem, Paul T. [3 ,5 ]
Cheever, Martin A. [3 ,4 ]
Fling, Steven P. [1 ,4 ]
Gottardo, Raphael [1 ,2 ,9 ,10 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, 1124 Columbia St, Seattle, WA 98104 USA
[2] Fred Hutchinson Canc Res Ctr, Biostat Bioinformat & Epidemiol Div, 1124 Columbia St, Seattle, WA 98104 USA
[3] Fred Hutchinson Canc Res Ctr, Clin Res Div, 1124 Columbia St, Seattle, WA 98104 USA
[4] Fred Hutchinson Canc Res Ctr, Canc Immunotherapy Trials Network, 1124 Columbia St, Seattle, WA 98104 USA
[5] Univ Washington, Dept Med, Div Dermatol, Seattle, WA USA
[6] Johns Hopkins Univ, Sch Med, Bloomberg Kimmel Inst Canc Immunotherapy, Baltimore, MD USA
[7] Johns Hopkins Univ, Sch Med, Sidney Kimmel Comprehens Canc Ctr, Baltimore, MD USA
[8] Icahn Sch Med Mt Sinai, Tisch Canc Inst, New York, NY 10029 USA
[9] CHU Vaudois, Lausanne, Switzerland
[10] Univ Lausanne, Lausanne, Switzerland
来源
PATTERNS | 2021年 / 2卷 / 12期
关键词
FLOW-CYTOMETRY DATA; T-CELLS; IDENTIFICATION; MARKER; MASS;
D O I
10.1016/j.patter.2021.100372
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a new method for single-cell cytometry studies, FAUST, which performs unbiased cell population discovery and annotation. FAUST processes experimental data on a per-sample basis and returns biologically interpretable cell phenotypes, making it well suited for the analysis of complex datasets. We provide simulation studies that compare FAUST with existing methodology, exemplifying its strength. We apply FAUST to data from a Merkel cell carcinoma anti-PD-1 trial and discover pre-treatment effector memory T cell correlates of outcome co-expressing PD-1, HLA-DR, and CD28. Using FAUST, we then validate these correlates in cryopreserved peripheral blood mononuclear cell samples from the same study, as well as an independent CyTOF dataset from a published metastatic melanoma trial. Finally, we show how FAUST's phenotypes can be used to perform cross-study data integration in the presence of diverse staining panels. Together, these results establish FAUST as a powerful new approach for unbiased discovery in single-cell cytometry.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Machine Intelligence in Single-Cell Data Analysis: Advances and New Challenges
    Liu, Jiajia
    Fan, Zhiwei
    Zhao, Weiling
    Zhou, Xiaobo
    FRONTIERS IN GENETICS, 2021, 12
  • [42] Integrating machine learning and single-cell trajectories to analyze T-cell exhaustion to predict prognosis and immunotherapy in colon cancer patients
    Shen, Xiaogang
    Zuo, Xiaofei
    Liang, Liang
    Wang, Lin
    Luo, Bin
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [43] Editorial: Machine learning methods in single-cell immune and drug response prediction
    Qi, Ren
    Zou, Quan
    FRONTIERS IN GENETICS, 2023, 14
  • [44] Analysis of transcriptome of single-cell RNA sequencing data using machine learning
    Rajesh, Mothe
    Martha, Sheshikala
    SOFT COMPUTING, 2023, 27 (13) : 9131 - 9141
  • [45] Single-Cell RNA Sequencing Reveals Stromal Evolution into LRRC15+ Myofibroblasts as a Determinant of Patient Response to Cancer Immunotherapy
    Dominguez, Claudia X.
    Mueller, Soren
    Keerthivasan, Shilpa
    Koeppen, Hartmut
    Hung, Jeffrey
    Gierke, Sarah
    Breart, Beatrice
    Foreman, Oded
    Bainbridge, Travis W.
    Castiglioni, Alessandra
    Senbabaoglu, Yasin
    Modrusan, Zora
    Liang, Yuxin
    Junttila, Melissa R.
    Klijn, Christiaan
    Bourgon, Richard
    Turley, Shannon J.
    CANCER DISCOVERY, 2020, 10 (02) : 232 - 253
  • [46] Single-cell integrative analysis reveals consensus cancer cell states and clinical relevance in breast cancer
    Lin Pang
    Fengyu Xiang
    Huan Yang
    Xinyue Shen
    Ming Fang
    Ran Li
    Yongjin Long
    Jiali Li
    Yonghuan Yu
    Bo Pang
    Scientific Data, 11
  • [47] Deep learning analysis of single-cell data in empowering clinical implementation
    Ma, Anjun
    Wang, Juexin
    Xu, Dong
    Ma, Qin
    CLINICAL AND TRANSLATIONAL MEDICINE, 2022, 12 (07):
  • [48] Single-cell integrative analysis reveals consensus cancer cell states and clinical relevance in breast cancer
    Pang, Lin
    Xiang, Fengyu
    Yang, Huan
    Shen, Xinyue
    Fang, Ming
    Li, Ran
    Long, Yongjin
    Li, Jiali
    Yu, Yonghuan
    Pang, Bo
    SCIENTIFIC DATA, 2024, 11 (01)
  • [49] Publisher Correction: Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data
    Yifan Zhao
    Huiyu Cai
    Zuobai Zhang
    Jian Tang
    Yue Li
    Nature Communications, 12
  • [50] A Machine-Learning Derived Red Blood Cell Morphology Tool Enables Differential Diagnosis and Novel Single-Cell Analyses
    Foy, Brody
    Stefely, Jonathan
    Bendapudi, Pavan K.
    Hasserjian, Robert P.
    Al-Samkari, Hanny
    Louissaint, Abner
    Fitzpatrick, Megan J.
    Hutchison, Bailey
    Mow, Christopher
    Collins, Julia
    Patel, Hasmukh P.
    Patel, Chhaya
    Patel, Nikita
    Ho, Samantha
    Kaufman, Richard M.
    Dzik, Walter
    Higgins, John M.
    Makar, Robert S.
    BLOOD, 2022, 140 : 10704 - 10705