New interpretable machine-learning method for single-cell data reveals correlates of clinical response to cancer immunotherapy

被引:14
|
作者
Greene, Evan [1 ,2 ]
Finak, Greg [1 ,2 ]
D'Amico, Leonard A. [1 ,4 ]
Bhardwaj, Nina [8 ]
Church, Candice D. [5 ]
Morishima, Chihiro [5 ]
Ramchurren, Nirasha [1 ,4 ]
Taube, Janis M. [6 ,7 ]
Nghiem, Paul T. [3 ,5 ]
Cheever, Martin A. [3 ,4 ]
Fling, Steven P. [1 ,4 ]
Gottardo, Raphael [1 ,2 ,9 ,10 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, 1124 Columbia St, Seattle, WA 98104 USA
[2] Fred Hutchinson Canc Res Ctr, Biostat Bioinformat & Epidemiol Div, 1124 Columbia St, Seattle, WA 98104 USA
[3] Fred Hutchinson Canc Res Ctr, Clin Res Div, 1124 Columbia St, Seattle, WA 98104 USA
[4] Fred Hutchinson Canc Res Ctr, Canc Immunotherapy Trials Network, 1124 Columbia St, Seattle, WA 98104 USA
[5] Univ Washington, Dept Med, Div Dermatol, Seattle, WA USA
[6] Johns Hopkins Univ, Sch Med, Bloomberg Kimmel Inst Canc Immunotherapy, Baltimore, MD USA
[7] Johns Hopkins Univ, Sch Med, Sidney Kimmel Comprehens Canc Ctr, Baltimore, MD USA
[8] Icahn Sch Med Mt Sinai, Tisch Canc Inst, New York, NY 10029 USA
[9] CHU Vaudois, Lausanne, Switzerland
[10] Univ Lausanne, Lausanne, Switzerland
来源
PATTERNS | 2021年 / 2卷 / 12期
关键词
FLOW-CYTOMETRY DATA; T-CELLS; IDENTIFICATION; MARKER; MASS;
D O I
10.1016/j.patter.2021.100372
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a new method for single-cell cytometry studies, FAUST, which performs unbiased cell population discovery and annotation. FAUST processes experimental data on a per-sample basis and returns biologically interpretable cell phenotypes, making it well suited for the analysis of complex datasets. We provide simulation studies that compare FAUST with existing methodology, exemplifying its strength. We apply FAUST to data from a Merkel cell carcinoma anti-PD-1 trial and discover pre-treatment effector memory T cell correlates of outcome co-expressing PD-1, HLA-DR, and CD28. Using FAUST, we then validate these correlates in cryopreserved peripheral blood mononuclear cell samples from the same study, as well as an independent CyTOF dataset from a published metastatic melanoma trial. Finally, we show how FAUST's phenotypes can be used to perform cross-study data integration in the presence of diverse staining panels. Together, these results establish FAUST as a powerful new approach for unbiased discovery in single-cell cytometry.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Interpretable machine learning of action potential duration restitution kinetics in single-cell models of atrial cardiomyocytes
    Song, Euijun
    Lee, Young-Seon
    JOURNAL OF ELECTROCARDIOLOGY, 2022, 74 : 137 - 145
  • [32] Single-cell analysis of a tumor-derived exosome signature correlates with prognosis and immunotherapy response
    Jiani Wu
    Dongqiang Zeng
    Shimeng Zhi
    Zilan Ye
    Wenjun Qiu
    Na Huang
    Li Sun
    Chunlin Wang
    Zhenzhen Wu
    Jianping Bin
    Yulin Liao
    Min Shi
    Wangjun Liao
    Journal of Translational Medicine, 19
  • [33] Identifying Lung Cancer Cell Markers with Machine Learning Methods and Single-Cell RNA-Seq Data
    Huang, Guo-Hua
    Zhang, Yu-Hang
    Chen, Lei
    Li, You
    Huang, Tao
    Cai, Yu-Dong
    LIFE-BASEL, 2021, 11 (09):
  • [34] Single-cell analysis of a tumor-derived exosome signature correlates with prognosis and immunotherapy response
    Wu, Jiani
    Zeng, Dongqiang
    Zhi, Shimeng
    Ye, Zilan
    Qiu, Wenjun
    Huang, Na
    Sun, Li
    Wang, Chunlin
    Wu, Zhenzhen
    Bin, Jianping
    Liao, Yulin
    Shi, Min
    Liao, Wangjun
    JOURNAL OF TRANSLATIONAL MEDICINE, 2021, 19 (01)
  • [35] Interpretable machine learning of action potential duration restitution properties in single-cell models of atrial cardiomyocyte
    Song, Euijun
    Lee, Young-Seon
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 231A - 231A
  • [36] Single-Cell Transcriptomic Analysis Reveals a Tumor-Reactive T Cell Signature Associated With Clinical Outcome and Immunotherapy Response In Melanoma
    Yan, Min
    Hu, Jing
    Ping, Yanyan
    Xu, Liwen
    Liao, Gaoming
    Jiang, Zedong
    Pang, Bo
    Sun, Shangqin
    Zhang, Yunpeng
    Xiao, Yun
    Li, Xia
    FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [37] scMoMtF: An interpretable multitask learning framework for single-cell multi-omics data analysis
    Lan, Wei
    Ling, Tongsheng
    Chen, Qingfeng
    Zheng, Ruiqing
    Li, Min
    Pan, Yi
    PLoS Computational Biology, 2024, 20 (12)
  • [38] Single-cell immune profiling reveals new insights into colorectal cancer
    Lonnberg, Tapio
    Stubbington, Michael J. T.
    IMMUNOLOGY AND CELL BIOLOGY, 2019, 97 (03): : 241 - 243
  • [39] Single cell profiling of PBMCs reveals correlates of clinical response to glofitamab.
    Nassiri, Sina
    Habegger, Lucas
    Gerber, Petra
    Tosevski, Vinko
    Huesser, Tamara
    Yanguez, Emilio
    Herter, Sylvia
    Weisser, Martin
    Korfi, Koorosh
    Umana, Pablo
    Piccione, Emily
    Broeske, Ann-Marie
    Bacac, Marina
    CANCER RESEARCH, 2022, 82 (12)
  • [40] An interpretable single-cell RNA sequencing data clustering method based on latent Dirichlet allocation
    Yang, Qi
    Xu, Zhaochun
    Zhou, Wenyang
    Wang, Pingping
    Jiang, Qinghua
    Juan, Liran
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)