New interpretable machine-learning method for single-cell data reveals correlates of clinical response to cancer immunotherapy

被引:14
|
作者
Greene, Evan [1 ,2 ]
Finak, Greg [1 ,2 ]
D'Amico, Leonard A. [1 ,4 ]
Bhardwaj, Nina [8 ]
Church, Candice D. [5 ]
Morishima, Chihiro [5 ]
Ramchurren, Nirasha [1 ,4 ]
Taube, Janis M. [6 ,7 ]
Nghiem, Paul T. [3 ,5 ]
Cheever, Martin A. [3 ,4 ]
Fling, Steven P. [1 ,4 ]
Gottardo, Raphael [1 ,2 ,9 ,10 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, 1124 Columbia St, Seattle, WA 98104 USA
[2] Fred Hutchinson Canc Res Ctr, Biostat Bioinformat & Epidemiol Div, 1124 Columbia St, Seattle, WA 98104 USA
[3] Fred Hutchinson Canc Res Ctr, Clin Res Div, 1124 Columbia St, Seattle, WA 98104 USA
[4] Fred Hutchinson Canc Res Ctr, Canc Immunotherapy Trials Network, 1124 Columbia St, Seattle, WA 98104 USA
[5] Univ Washington, Dept Med, Div Dermatol, Seattle, WA USA
[6] Johns Hopkins Univ, Sch Med, Bloomberg Kimmel Inst Canc Immunotherapy, Baltimore, MD USA
[7] Johns Hopkins Univ, Sch Med, Sidney Kimmel Comprehens Canc Ctr, Baltimore, MD USA
[8] Icahn Sch Med Mt Sinai, Tisch Canc Inst, New York, NY 10029 USA
[9] CHU Vaudois, Lausanne, Switzerland
[10] Univ Lausanne, Lausanne, Switzerland
来源
PATTERNS | 2021年 / 2卷 / 12期
关键词
FLOW-CYTOMETRY DATA; T-CELLS; IDENTIFICATION; MARKER; MASS;
D O I
10.1016/j.patter.2021.100372
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a new method for single-cell cytometry studies, FAUST, which performs unbiased cell population discovery and annotation. FAUST processes experimental data on a per-sample basis and returns biologically interpretable cell phenotypes, making it well suited for the analysis of complex datasets. We provide simulation studies that compare FAUST with existing methodology, exemplifying its strength. We apply FAUST to data from a Merkel cell carcinoma anti-PD-1 trial and discover pre-treatment effector memory T cell correlates of outcome co-expressing PD-1, HLA-DR, and CD28. Using FAUST, we then validate these correlates in cryopreserved peripheral blood mononuclear cell samples from the same study, as well as an independent CyTOF dataset from a published metastatic melanoma trial. Finally, we show how FAUST's phenotypes can be used to perform cross-study data integration in the presence of diverse staining panels. Together, these results establish FAUST as a powerful new approach for unbiased discovery in single-cell cytometry.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] A new interpretable machine learning approach for single-cell data discovers correlates of clinical outcome in cancer immunotherapy
    Greg, Finak
    Greene, Evan
    D'Amico, Leonard
    Bhardwaj, Nina
    Church, Candice
    Morishima, Chihiro
    Ramchurren, Nirasha
    Taube, Janis
    Nghiem, Paul
    Cheever, Martin
    Fling, Steven
    Gottardo, Raphael
    JOURNAL OF IMMUNOLOGY, 2020, 204 (01):
  • [2] Biases in machine-learning models of human single-cell data
    Theresa Willem
    Vladimir A. Shitov
    Malte D. Luecken
    Niki Kilbertus
    Stefan Bauer
    Marie Piraud
    Alena Buyx
    Fabian J. Theis
    Nature Cell Biology, 2025, 27 (3) : 384 - 392
  • [3] Interpretable deep learning of single-cell and epigenetic data reveals novel molecular insights in aging
    Zhi-Peng Li
    Zhaozhen Du
    De-Shuang Huang
    Andrew E. Teschendorff
    Scientific Reports, 15 (1)
  • [4] NEW SINGLE-CELL SCREENING METHOD FINDS IMMUNOTHERAPY RESPONSE MODULATOR
    Frangieh, C. J.
    Melms, J. C.
    Thakore, P., I
    Geiger-Schuller, K. R.
    Ho, P.
    Luoma, A. M.
    CANCER DISCOVERY, 2021, 11 (05) : 1005 - 1005
  • [5] Reanalysis of single-cell data reveals macrophage subsets associated with the immunotherapy response and prognosis of patients with endometrial cancer
    Wu, Qianhua
    Jiang, Genyi
    Sun, Yihan
    Li, Bilan
    EXPERIMENTAL CELL RESEARCH, 2023, 430 (02)
  • [6] Single-cell specific and interpretable machine learning models for sparse scChIP-seq data imputation
    Albrecht, Steffen
    Andreani, Tommaso
    Andrade-Navarro, Miguel A.
    Fontaine, Jean Fred
    PLOS ONE, 2022, 17 (07):
  • [7] The Trifecta of Single-Cell, Systems-Biology, and Machine-Learning Approaches
    Weiskittel, Taylor M.
    Correia, Cristina
    Yu, Grace T.
    Ung, Choong Yong
    Kaufmann, Scott H.
    Billadeau, Daniel D.
    Li, Hu
    GENES, 2021, 12 (07)
  • [8] Integrative analysis of pan-cancer single-cell data reveals a tumor ecosystem subtype predicting immunotherapy response
    Zeng, Shengjie
    Chen, Liuxun
    Tian, Jinyu
    Liu, Zhengxin
    Liu, Xudong
    Tang, Haibin
    Wu, Hao
    Liu, Chuan
    NPJ PRECISION ONCOLOGY, 2024, 8 (01)
  • [9] Single-Cell Landscape of Liver Cancer in Response to Immunotherapy
    Diao, Feiyu
    ASIA-PACIFIC JOURNAL OF ONCOLOGY NURSING, 2021, 8 (06) : 591 - 593
  • [10] Single-Cell Classification Using Mass Spectrometry through Interpretable Machine Learning
    Xie, Yuxuan Richard
    Castro, Daniel C.
    Bell, Sara E.
    Rubakhin, Stanislav S.
    Sweedler, Jonathan, V
    ANALYTICAL CHEMISTRY, 2020, 92 (13) : 9338 - 9347