The Study of the Binder Poly(acrylic acid) and Its Role in Concomitant Solid-Electrolyte Interphase Formation on Si Anodes

被引:52
|
作者
Browning, Katie L. [1 ,2 ]
Sacci, Robert L. [2 ]
Doucet, Mathieu [3 ]
Browning, James F. [3 ]
Kim, Joshua R. [3 ]
Veith, Gabriel M. [2 ]
机构
[1] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN 37831 USA
关键词
poly(acrylic acid) binder; Si anodes; solid-electrolyte interphase; neutron reflectometry; quartz crystal microbalance; LITHIUM-ION BATTERIES; QUARTZ-CRYSTAL MICROBALANCE; FLUOROETHYLENE CARBONATE; POLYACRYLIC-ACID; SILICON ELECTRODES; ELECTROCHEMICAL PERFORMANCE; CARBOXYMETHYL CELLULOSE; NEGATIVE ELECTRODES; FUNCTIONAL BINDERS; SURFACE-CHEMISTRY;
D O I
10.1021/acsami.9b22382
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We use neutron reflectometry to study how the polymeric binder, poly(acrylic acid) (PAA), affects the in situ formation and chemical composition of the solid-electrolyte interphase (SEI) formation on a silicon anode at various states of charge. The reflectivity is correlated with electrochemical quartz crystal microbalance to better understand the viscoelastic effects of the polymer during cycling. The use of model thin films allows for a well-controlled interface between the amorphous Si surface and the PAA layer. If the PAA perfectly coats the Si surface and standard processing conditions are used, the binder will prevent the lithiation of the anode. The PAA suppresses the growth of a new layer formed at early states of discharge (open circuit voltage to 0.8 V vs Li/Li+), protecting the surface of the anode. At 0.15 V, the SEI layer underneath the PAA changes in chemical composition as indicated by an increase in the scattering length density and thickness as the layer incorporates components from the electrolyte, most likely the salt. At lithiated and delithiated states, the SEI layer changes in chemical composition and grows in thickness with delithiation and shrinks during lithiation.
引用
收藏
页码:10018 / 10030
页数:13
相关论文
共 50 条
  • [21] Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes
    Leung, Kevin
    Budzien, Joanne L.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (25) : 6583 - 6586
  • [22] From Additive to Cosolvent: How Fluoroethylene Carbonate Concentrations Influence Solid-Electrolyte Interphase Properties and Electrochemical Performance of Si/Gr Anodes
    Gehrlein, Lydia
    Njel, Christian
    Jeschull, Fabian
    Maibach, Julia
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (09) : 10710 - 10720
  • [23] Solid-Electrolyte Interphase Formation and Electrolyte Reduction at Li-Ion Battery Graphite Anodes: Insights from First-Principles Molecular Dynamics
    Ganesh, P.
    Kent, P. R. C.
    Jiang, De-en
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (46): : 24476 - 24481
  • [24] Role of Polysulfide Anions in Solid-Electrolyte Interphase Formation at the Lithium Metal Surface in Li-S Batteries
    Hankins, Kie
    Prabhakaran, Venkateshkumar
    Wi, Sungun
    Shutthanandan, Vaithiyalingam
    Johnson, Grant E.
    Roy, Swadipta
    Wang, Hui
    Shao, Yuyan
    Thevuthasan, Suntharampillai
    Balbuena, Perla B.
    Mueller, Karl T.
    Murugesan, Vijayakumar
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (38): : 9360 - 9367
  • [25] Impact of dual-layer solid-electrolyte interphase inhomogeneities on early-stage defect formation in Si electrodes
    Chunguang Chen
    Tao Zhou
    Dmitri L. Danilov
    Lu Gao
    Svenja Benning
    Nino Schön
    Samuel Tardif
    Hugh Simons
    Florian Hausen
    Tobias U. Schülli
    R.-A. Eichel
    Peter H. L. Notten
    Nature Communications, 11
  • [26] Impact of dual-layer solid-electrolyte interphase inhomogeneities on early-stage defect formation in Si electrodes
    Chen, Chunguang
    Zhou, Tao
    Danilov, Dmitri L.
    Gao, Lu
    Benning, Svenja
    Schoen, Nino
    Tardif, Samuel
    Simons, Hugh
    Hausen, Florian
    Schulli, Tobias U.
    Eichel, R-A
    Notten, Peter H. L.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [27] Systematic Investigation of Binders for Silicon Anodes: Interactions of Binder with Silicon Particles and Electrolytes and Effects of Binders on Solid Electrolyte Interphase Formation
    Cao Cuong Nguyen
    Yoon, Taeho
    Seo, Daniel M.
    Guduru, Pradeep
    Lucht, Brett L.
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (19) : 12211 - 12220
  • [28] Role of Oxygen in the Formation of the Solid-Electrolyte Interphase Evaluated by Online Electrochemical Mass Spectrometry and Electrochemical Atomic Force Microscopy
    Peng, Baoxu
    Li, Bingbing
    Ge, Aimin
    Xu, Chengyang
    Inoue, Ken-ichi
    Ye, Shen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (26): : 12528 - 12540
  • [29] Regulation of solid-electrolyte interphase formation via a Li3PO4 artificial layer for ultra-stable germanium anodes
    Yan, Haifeng
    Chao, Kun
    Zhang, Zhonghua
    Zhou, Zhenfang
    Li, Yuanming
    Liu, Xuguang
    Liu, Jing
    Guo, Xiaosong
    Mao, Changming
    Li, Guicun
    INORGANIC CHEMISTRY FRONTIERS, 2025,
  • [30] Enhanced adhesion and electrochemical performance of Si anodes with gum arabic grafted poly(acrylic acid) as a water-soluble binder
    He, Jiarong
    Zhang, Lingzhi
    Zhong, Haoxiang
    POLYMER INTERNATIONAL, 2021, 70 (12) : 1668 - 1679