The Study of the Binder Poly(acrylic acid) and Its Role in Concomitant Solid-Electrolyte Interphase Formation on Si Anodes

被引:52
|
作者
Browning, Katie L. [1 ,2 ]
Sacci, Robert L. [2 ]
Doucet, Mathieu [3 ]
Browning, James F. [3 ]
Kim, Joshua R. [3 ]
Veith, Gabriel M. [2 ]
机构
[1] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN 37831 USA
关键词
poly(acrylic acid) binder; Si anodes; solid-electrolyte interphase; neutron reflectometry; quartz crystal microbalance; LITHIUM-ION BATTERIES; QUARTZ-CRYSTAL MICROBALANCE; FLUOROETHYLENE CARBONATE; POLYACRYLIC-ACID; SILICON ELECTRODES; ELECTROCHEMICAL PERFORMANCE; CARBOXYMETHYL CELLULOSE; NEGATIVE ELECTRODES; FUNCTIONAL BINDERS; SURFACE-CHEMISTRY;
D O I
10.1021/acsami.9b22382
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We use neutron reflectometry to study how the polymeric binder, poly(acrylic acid) (PAA), affects the in situ formation and chemical composition of the solid-electrolyte interphase (SEI) formation on a silicon anode at various states of charge. The reflectivity is correlated with electrochemical quartz crystal microbalance to better understand the viscoelastic effects of the polymer during cycling. The use of model thin films allows for a well-controlled interface between the amorphous Si surface and the PAA layer. If the PAA perfectly coats the Si surface and standard processing conditions are used, the binder will prevent the lithiation of the anode. The PAA suppresses the growth of a new layer formed at early states of discharge (open circuit voltage to 0.8 V vs Li/Li+), protecting the surface of the anode. At 0.15 V, the SEI layer underneath the PAA changes in chemical composition as indicated by an increase in the scattering length density and thickness as the layer incorporates components from the electrolyte, most likely the salt. At lithiated and delithiated states, the SEI layer changes in chemical composition and grows in thickness with delithiation and shrinks during lithiation.
引用
收藏
页码:10018 / 10030
页数:13
相关论文
共 50 条
  • [11] Effect of temperature on formation and evolution of solid electrolyte interphase on Si@Graphite@C anodes
    Dong H.
    Wang J.
    Wang P.
    Ding H.
    Song R.
    Zhang N.-S.
    Zhao D.-N.
    Zhang L.-J.
    Li S.-Y.
    Journal of Energy Chemistry, 2022, 64 : 190 - 200
  • [12] Effect of temperature on formation and evolution of solid electrolyte interphase on Si@Graphite@C anodes
    Hong Dong
    Jie Wang
    Peng Wang
    Hao Ding
    Ru Song
    Ning-Shuang Zhang
    Dong-Ni Zhao
    Li-Juan Zhang
    Shi-You Li
    Journal of Energy Chemistry, 2022, 64 (01) : 190 - 200
  • [13] Role of a Solid-Electrolyte Interphase in the Dendritic Electrodeposition of Lithium: A Brownian Dynamics Simulation Study
    Byun, Kisang
    Saha, Joyanta K.
    Jane, Joonkyung
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (17): : 9134 - 9141
  • [14] Controlling electric potential to inhibit solid-electrolyte interphase formation on nanowire anodes for ultrafast lithium-ion batteries
    Won Jun Chang
    Su Han Kim
    Jiseon Hwang
    Jinho Chang
    Dong won Yang
    Sun Sang Kwon
    Jin Tae Kim
    Won Woo Lee
    Jae Hyung Lee
    Hyunjung Park
    Taeseup Song
    In-Hwan Lee
    Dongmok Whang
    Won Il Park
    Nature Communications, 9
  • [15] Controlling electric potential to inhibit solid-electrolyte interphase formation on nanowire anodes for ultrafast lithium-ion batteries
    Chang, Won Jun
    Kim, Su Han
    Hwang, Jiseon
    Chang, Jinho
    Yang, Dong Won
    Kwon, Sun Sang
    Kim, Jin Tae
    Lee, Won Woo
    Lee, Jae Hyung
    Park, Hyunjung
    Song, Taeseup
    Lee, In-Hwan
    Whang, Dongmok
    Park, Won Il
    NATURE COMMUNICATIONS, 2018, 9
  • [16] Isothermal microcalorimetry as a tool to study solid-electrolyte interphase formation in lithium-ion cells
    Hall, David S.
    Glazier, Stephen L.
    Dahn, J. R.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (16) : 11383 - 11390
  • [17] The role of the hydrogen evolution reaction in the solid-electrolyte interphase formation mechanism for "Water-in-Salt" electrolytes
    Dubouis, Nicolas
    Lemaire, Pierre
    Mirvaux, Boris
    Salager, Elodie
    Deschamps, Michael
    Grimaud, Alexis
    ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (12) : 3491 - 3499
  • [18] The Role of Oxygen in Lithiation and Solid Electrolyte Interphase Formation Processes in Silicon-Based Anodes
    Li, Zhifei
    Stetson, Caleb
    Frisco, Sarah
    Harvey, Steve
    Huey, Zoey
    Teeter, Glenn
    Engtrakul, Chaiwat
    Burrell, Anthony
    Li, Xiaolin
    Zakutayev, Andriy
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (12)
  • [19] Robust Solid/Electrolyte Interphase (SEI) Formation on Si Anodes Using Glyme-Based Electrolytes
    Yang, Guang
    Frisco, Sarah
    Tao, Runming
    Philip, Nathan
    Bennett, Tyler H.
    Stetson, Caleb
    Zhang, Ji-Guang
    Han, Sang-Don
    Teeter, Glenn
    Harvey, Steven P.
    Zhang, Yunya
    Veith, Gabriel M.
    Nanda, Jagjit
    ACS ENERGY LETTERS, 2021, 6 (05) : 1684 - 1693
  • [20] Operando Electrochemical Atomic Force Microscopy of Solid-Electrolyte Interphase Formation on Graphite Anodes: The Evolution of SEI Morphology and Mechanical Properties
    Zhang, Zhenyu
    Smith, Keenan
    Jervis, Rhodri
    Shearing, Paul R.
    Miller, Thomas S.
    Brett, Daniel J. L.
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (31) : 35132 - 35141