Decoding Reed-Muller Codes over Product Sets

被引:0
|
作者
Kim, John Y. [1 ]
Kopparty, Swastik [2 ,3 ]
机构
[1] Virtu Financial, Austin, TX 78746 USA
[2] Rutgers State Univ, Dept Math, New Brunswick, NJ USA
[3] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ USA
基金
美国国家科学基金会;
关键词
error-correcting codes; Reed-Muller codes; algebraic algorithms; Schwartz-Zippel lemma; SOLOMON CODES;
D O I
10.4086/toc.2017.v011a021
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a polynomial-time algorithm to decode multivariate polynomial codes of degree d up to half their minimum distance, when the evaluation points are an arbitrary product set S-m, for every d < vertical bar S vertical bar. Previously known algorithms could achieve this only if the set S had some very special algebraic structure, or if the degree d was significantly smaller than vertical bar S vertical bar. We also give a near-linear-time randomized algorithm, based on tools from list-decoding, to decode these codes from nearly half their minimum distance, provided d < (1- epsilon) vertical bar S vertical bar for constant epsilon > 0. Our result gives an m-dimensional generalization of the well-known decoding algorithms for Reed-Solomon codes, and can be viewed as giving an algorithmic version of the Schwartz-Zippel lemma.
引用
收藏
页数:38
相关论文
共 50 条
  • [21] A New Permutation Decoding Method for Reed-Muller Codes
    Kamenev, Mikhail
    Kameneva, Yulia
    Kurmaev, Oleg
    Maevskiy, Alexey
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 26 - 30
  • [22] Error exponents for recursive decoding of Reed-Muller codes
    Burnashev, Marat
    Dumer, Ilya
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 704 - +
  • [23] Improved partial permutation decoding for Reed-Muller codes
    Key, J. D.
    McDonough, T. P.
    Mavron, V. C.
    DISCRETE MATHEMATICS, 2017, 340 (04) : 722 - 728
  • [24] On recursive decoding with sublinear complexity for Reed-Muller codes
    Dumer, I
    2003 IEEE INFORMATION THEORY WORKSHOP, PROCEEDINGS, 2003, : 14 - 17
  • [25] FAST CORRELATION DECODING OF REED-MULLER CODES.
    Karyakin, Yu.D.
    Problems of information transmission, 1987, 23 (02) : 121 - 129
  • [26] Recursive list decoding for reed-muller codes and their subcodes
    Dumer, I
    Shabunov, K
    INFORMATION, CODING AND MATHEMATICS, 2002, 687 : 279 - 298
  • [27] Distance Threshold Viterbi Decoding of Reed-Muller codes
    Magdy, Ahmed
    Mahran, Ashraf
    Abdel-Hamid, Gamal M.
    2019 15TH INTERNATIONAL COMPUTER ENGINEERING CONFERENCE (ICENCO 2019), 2019, : 12 - 16
  • [29] Decoding Reed-Muller Codes With Successive Codeword Permutations
    Doan, Nghia
    Hashemi, Seyyed Ali
    Mondelli, Marco
    Gross, Warren J. J.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (11) : 7134 - 7145
  • [30] Efficient decoding algorithms for generalized Reed-Muller codes
    Paterson, KG
    Jones, AE
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2000, 48 (08) : 1272 - 1285