Some new Hermite-Hadamard type inequalities for generalized harmonically convex functions involving local fractional integrals

被引:6
|
作者
Sun, Wenbing [1 ]
Xu, Rui [1 ]
机构
[1] Shaoyang Univ, Sch Sci, Shaoyang 422000, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 10期
关键词
Hermite-Hadamard type inequality; generalized harmonically convex function; Yang's fractal sets; local fractional integral;
D O I
10.3934/math.2021620
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish a new integral identity involving local fractional integral on Yang's fractal sets. Using this integral identity, some new generalized Hermite-Hadamard type inequalities whose function is monotonically increasing and generalized harmonically convex are obtained. Finally, we construct some generalized special means to explain the applications of these inequalities.
引用
收藏
页码:10679 / 10695
页数:17
相关论文
共 50 条
  • [21] Hermite-Hadamard type inequalities for harmonically (α, m)-convex functions
    Iscan, Imdat
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (02): : 381 - 390
  • [22] Hermite-Hadamard Type Inequalities for h-Convex Functions Via Generalized Fractional Integrals
    Ali, M. Aamir
    Budak, H.
    Abbas, M.
    Sarikaya, M. Z.
    Kashuri, A.
    JOURNAL OF MATHEMATICAL EXTENSION, 2020, 14 (04) : 187 - 234
  • [23] On the Hermite-Hadamard type inequalities involving generalized integrals
    Valdes, Juan E. Napoles
    CONTRIBUTIONS TO MATHEMATICS, 2022, 5 : 45 - 51
  • [24] Some Hermite-Hadamard Type Inequalities for Harmonically s-Convex Functions
    Chen, Feixiang
    Wu, Shanhe
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [25] Fejer and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions
    Chen, Feixiang
    Wu, Shanhe
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [26] Fractional inequalities of the Hermite-Hadamard type for m-polynomial convex and harmonically convex functions
    Nwaeze, Eze R.
    Khan, Muhammad Adil
    Ahmadian, Ali
    Ahmad, Mohammad Nazir
    Mahmood, Ahmad Kamil
    AIMS MATHEMATICS, 2021, 6 (02): : 1889 - 1904
  • [27] ON NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR GENERALIZED CONVEX FUNCTIONS
    Qaisar, Shahid
    He, Chuanjiang
    Hussain, Sabir
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (33): : 139 - 148
  • [28] Generalized fractional integral inequalities of Hermite–Hadamard type for harmonically convex functions
    Dafang Zhao
    Muhammad Aamir Ali
    Artion Kashuri
    Hüseyin Budak
    Advances in Difference Equations, 2020
  • [29] HERMITE-HADAMARD TYPE INEQUALITIES FOR PRODUCT OF HARMONICALLY CONVEX FUNCTIONS VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Kunt, Mehmet
    Iscan, Imdat
    Yazici, Nazli
    JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 7 (04): : 74 - 82
  • [30] New Estimates on Hermite-Hadamard Type Inequalities via Generalized Tempered Fractional Integrals for Convex Functions with Applications
    Kashuri, Artion
    Almalki, Yahya
    Mahnashi, Ali M.
    Sahoo, Soubhagya Kumar
    FRACTAL AND FRACTIONAL, 2023, 7 (08)