The Diameter of Sparse Random Graphs

被引:38
|
作者
Riordan, Oliver [1 ]
Wormald, Nicholas [2 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
来源
COMBINATORICS PROBABILITY & COMPUTING | 2010年 / 19卷 / 5-6期
基金
美国国家科学基金会;
关键词
DISTANCES;
D O I
10.1017/S0963548310000325
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we study the diameter of the random graph G(n,p), i.e., the largest finite distance between two vertices, for a wide range of functions p= p(n). For p =lambda/n with lambda > 1 constant we give a simple proof of an essentially best possible result, with an O-p(1) additive correction term. Using similar techniques, we establish two-point concentration in the case that np -> infinity. For p = (1 + epsilon)/n with epsilon -> 0, we obtain a corresponding result that applies all the way down to the scaling window of the phase transition, with an O-p(1/epsilon) additive correction term whose (appropriately scaled) limiting distribution we describe. Combined with earlier results, our new results complete the determination of the diameter of the random graph G(n, p) to an accuracy of the order of its standard deviation (or better), for all functions p = p(n). Throughout we use branching process methods, rather than the more common approach of separate analysis of the 2-core and the trees attached to it.
引用
收藏
页码:835 / 926
页数:92
相关论文
共 50 条
  • [41] Sparse Quasi-Random Graphs
    Fan Chung
    Ronald Graham
    Combinatorica, 2002, 22 : 217 - 244
  • [42] The cover time of sparse random graphs
    Cooper, Colin
    Frieze, Alan
    RANDOM STRUCTURES & ALGORITHMS, 2007, 30 (1-2) : 1 - 16
  • [43] PUSH IS FAST ON SPARSE RANDOM GRAPHS
    Meier, Florian
    Peter, Ueli
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (01) : 29 - 49
  • [44] The largest hole in sparse random graphs
    Draganic, Nemanja
    Glock, Stefan
    Krivelevich, Michael
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (04) : 666 - 677
  • [45] A note on coloring sparse random graphs
    Sommer, Christian
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3381 - 3384
  • [46] Cycle lengths in sparse random graphs
    Alon, Yahav
    Krivelevich, Michael
    Lubetzky, Eyal
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (03) : 444 - 461
  • [47] Chromatic Thresholds in Sparse Random Graphs
    Allen, Peter
    Bottcher, Julia
    Griffiths, Simon
    Kohayakawa, Yoshiharu
    Morris, Robert
    RANDOM STRUCTURES & ALGORITHMS, 2017, 51 (02) : 215 - 236
  • [48] Majority dynamics on sparse random graphs
    Chakraborti, Debsoumya
    Kim, Jeong Han
    Lee, Joonkyung
    Tran, Tuan
    RANDOM STRUCTURES & ALGORITHMS, 2023, 63 (01) : 171 - 191
  • [49] The friendship paradox for sparse random graphs
    Hazra, Rajat Subhra
    den Hollander, Frank
    Parvaneh, Azadeh
    PROBABILITY THEORY AND RELATED FIELDS, 2025,
  • [50] EXTREMAL CUTS OF SPARSE RANDOM GRAPHS
    Dembo, Amir
    Montanari, Andrea
    Sen, Subhabrata
    ANNALS OF PROBABILITY, 2017, 45 (02): : 1190 - 1217