The Diameter of Sparse Random Graphs

被引:38
|
作者
Riordan, Oliver [1 ]
Wormald, Nicholas [2 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
来源
COMBINATORICS PROBABILITY & COMPUTING | 2010年 / 19卷 / 5-6期
基金
美国国家科学基金会;
关键词
DISTANCES;
D O I
10.1017/S0963548310000325
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we study the diameter of the random graph G(n,p), i.e., the largest finite distance between two vertices, for a wide range of functions p= p(n). For p =lambda/n with lambda > 1 constant we give a simple proof of an essentially best possible result, with an O-p(1) additive correction term. Using similar techniques, we establish two-point concentration in the case that np -> infinity. For p = (1 + epsilon)/n with epsilon -> 0, we obtain a corresponding result that applies all the way down to the scaling window of the phase transition, with an O-p(1/epsilon) additive correction term whose (appropriately scaled) limiting distribution we describe. Combined with earlier results, our new results complete the determination of the diameter of the random graph G(n, p) to an accuracy of the order of its standard deviation (or better), for all functions p = p(n). Throughout we use branching process methods, rather than the more common approach of separate analysis of the 2-core and the trees attached to it.
引用
收藏
页码:835 / 926
页数:92
相关论文
共 50 条
  • [21] On the Rigidity of Sparse Random Graphs
    Linial, Nati
    Mosheiff, Jonathan
    JOURNAL OF GRAPH THEORY, 2017, 85 (02) : 466 - 480
  • [22] RANDOM SUBGRAPHS IN SPARSE GRAPHS
    Joos, Felix
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (04) : 2350 - 2360
  • [23] Random perturbation of sparse graphs
    Hahn-Klimroth, Max
    Maesaka, Giulia S.
    Mogge, Yannick
    Mohr, Samuel
    Parczyk, Olaf
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [24] Sampling Random Colorings of Sparse Random Graphs
    Efthymiou, Charilaos
    Hayes, Thomas P.
    Stefankovic, Daniel
    Vigoda, Eric
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 1759 - 1771
  • [25] The Diameter of Dense Random Regular Graphs
    Shimizu, Nobutaka
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 1934 - 1944
  • [26] Stretch and Diameter in Random Geometric Graphs
    Ghurumuruhan Ganesan
    Algorithmica, 2018, 80 : 300 - 330
  • [27] THE DIAMETER OF CONNECTED COMPONENTS OF RANDOM GRAPHS
    SPIRAKIS, P
    LECTURE NOTES IN COMPUTER SCIENCE, 1987, 246 : 264 - 276
  • [28] Stretch and Diameter in Random Geometric Graphs
    Ganesan, Ghurumuruhan
    ALGORITHMICA, 2018, 80 (01) : 300 - 330
  • [29] Rainbow Connection of Sparse Random Graphs
    Frieze, Alan
    Tsourakakis, Charalampos E.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (04):
  • [30] Implementing huge sparse random graphs
    Naor, Moni
    Nussboim, Asaf
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2007, 4627 : 596 - +