Structural Comparative Modeling of Multi-Domain F508del CFTR

被引:10
|
作者
McDonald, Eli Fritz [1 ,2 ]
Woods, Hope [2 ,3 ]
Smith, Shannon T. [2 ,3 ]
Kim, Minsoo [3 ]
Schoeder, Clara T. [1 ,2 ,4 ]
Plate, Lars [1 ,5 ]
Meiler, Jens [1 ,2 ,4 ,6 ,7 ]
机构
[1] Vanderbilt Univ, Dept Chem, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Ctr Struct Biol, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Program Chem & Phys Biol, Nashville, TN 37235 USA
[4] Univ Leipzig, Leipzig Med Sch, D-04109 Leipzig, Germany
[5] Vanderbilt Univ, Dept Biol Sci, Nashville, TN 37235 USA
[6] Vanderbilt Univ, Dept Pharmacol, Nashville, TN 37235 USA
[7] Univ Leipzig, Inst Drug Discovery, D-04109 Leipzig, Germany
关键词
cystic fibrosis; comparative modeling; computational protein modeling; protein folding disease; pharmacological chaperones; VX-809; structure-based drug discovery; TRANSMEMBRANE CONDUCTANCE REGULATOR; NUCLEOTIDE-BINDING DOMAIN; CORRECTOR VX-809; LIGAND DOCKING; MUTATION; NBD1; PREDICTION; MECHANISM; IDENTIFICATION; SIMULATIONS;
D O I
10.3390/biom12030471
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cystic fibrosis (CF) is a rare genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial anion channel expressed in several vital organs. Absence of functional CFTR results in imbalanced osmotic equilibrium and subsequent mucus build up in the lungs-which increases the risk of infection and eventually causes death. CFTR is an ATP-binding cassette (ABC) transporter family protein composed of two transmembrane domains (TMDs), two nucleotide binding domains (NBDs), and an unstructured regulatory domain. The most prevalent patient mutation is the deletion of F508 (F508del), making F508del CFTR the primary target for current FDA approved CF therapies. However, no experimental multi-domain F508del CFTR structure has been determined and few studies have modeled F508del using multi-domain WT CFTR structures. Here, we used cryo-EM density data and Rosetta comparative modeling (RosettaCM) to compare a F508del model with published experimental data on CFTR NBD1 thermodynamics. We then apply this modeling method to generate multi-domain WT and F508del CFTR structural models. These models demonstrate the destabilizing effects of F508del on NBD1 and the NBD1/TMD interface in both the inactive and active conformation of CFTR. Furthermore, we modeled F508del/R1070W and F508del bound to the CFTR corrector VX-809. Our models reveal the stabilizing effects of VX-809 on multi-domain models of F508del CFTR and pave the way for rational design of additional drugs that target F508del CFTR for treatment of CF.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] LEAD IDENTIFICATION OF CFTR F508DEL CORRECTORS THROUGH A COMBINATION OF FUNCTIONAL AND MECHANISTIC ASSAYS
    Liang, F.
    Harrington, J.
    Layer, E.
    Valdez, R.
    Bhatt, P.
    Amarnani, D.
    Sui, J.
    Cole, B.
    Bihler, H.
    Mense, M.
    Fitzpatrick, R.
    PEDIATRIC PULMONOLOGY, 2011, : 278 - 279
  • [42] SEVERE BONE LOSS ASSOCIATED WITH REDUCED BONE FORMATION IN F508DEL CFTR MICE
    Le Henaff, C.
    Gimenez, A.
    Hay, E.
    Marty, C.
    Marie, P.
    Jacquot, J.
    PEDIATRIC PULMONOLOGY, 2010, : 293 - 293
  • [43] CF BONE DISEASE: EFFECT OF CFTR CORRECTORS ON HUMAN OSTEOBLASTS WITH THE F508DEL MUTATION
    Velard, F.
    Delion, M.
    Guillaume, C.
    Tabary, O.
    Barthes, F.
    Touqui, L.
    Gangloff, S.
    Sermet-Gaudelus, I
    Jacquot, J.
    PEDIATRIC PULMONOLOGY, 2014, 49 : 422 - 422
  • [44] Cystic fibrosis: scheme ELX/TEZ/IVA in children with F508del CFTR allele?
    Simon, Annika
    PNEUMOLOGIE, 2023, 77 (08):
  • [45] CFTR MODULATION WITH TEZACAFTOR/IVACAFTOR IN PATIENTS HETEROZYGOUS FOR F508DEL AND A RESIDUAL FUNCTION MUTATION
    Rowe, Steven M.
    Davies, Jane
    PEDIATRIC PULMONOLOGY, 2017, 52 : S175 - S176
  • [46] THE CHAPEROME AND CFTR MRNA ARE DOWNREGULATED IN THE NASAL TRANSCRIPTOME OF F508DEL CYSTIC FIBROSIS PATIENTS
    Sala, M.
    Reyfman, P.
    Misharin, A.
    Budingcr, G.
    Sznajder, J.
    Jain, M.
    PEDIATRIC PULMONOLOGY, 2018, 53 : 204 - 204
  • [47] Changes in LCI in F508del/F508del patients treated with lumacaftor/ivacaftor: Results from the prospect study
    Shaw, Michelle
    Khan, Umer
    Clancy, John P.
    Donaldson, Scott H.
    Sagel, Scott D.
    Rowe, Steven M.
    Ratjen, Felix
    JOURNAL OF CYSTIC FIBROSIS, 2020, 19 (06) : 931 - 933
  • [48] BIOPHYSICAL MEASURES OF FULL-LENGTH CFTR THERMOSTABILITY: COMPARISON OF WILD-TYPE AND F508DEL CFTR
    Cant, N.
    Rimington, T.
    Meng, X.
    Pollock, N.
    Ford, B.
    PEDIATRIC PULMONOLOGY, 2013, 48 : 209 - 210
  • [49] Personalized Selection of a CFTR Modulator for a Patient with a Complex Allele [L467F;F508del]
    Kondratyeva, Elena
    Bulatenko, Nataliya
    Melyanovskaya, Yuliya
    Efremova, Anna
    Zhekaite, Elena
    Sherman, Viktoriya
    Voronkova, Anna
    Asherova, Irina
    Polyakov, Alexander
    Adyan, Tagui
    Kovalskaia, Valeriia
    Bukharova, Tatiana
    Goldshtein, Dmitry
    Kutsev, Sergey
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2022, 44 (10) : 5126 - 5138
  • [50] Lumacaf tor/ivacaf tor therapy fails to increase insulin secretion in F508del/F508del CF patients
    Moheet, Amir
    Beisang, Daniel
    Zhang, Lin
    Sagel, Scott D.
    VanDalfsen, Jill M.
    Heltshe, Sonya L.
    Frederick, Carla
    Mann, Michelle
    Antos, Nicholas
    Billings, Joanne
    Rowe, Steven M.
    Moran, Antoinette
    JOURNAL OF CYSTIC FIBROSIS, 2021, 20 (02) : 333 - 338